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This paper surveys several uncertainty-handling paradigms—fuzzy sets, intuition-istic fuzzy sets, and neutrosophic sets—and demonstrates how they can enrichIT Service Management (ITSM). We then introduce two new frameworks—FuzzyService Integration and Management (FSIM) and Neutrosophic Service Integra-tion and Management (NSIM)—which embed these uncertainty models into Ser-vice Integration and Management (SIAM). FSIM uses fuzzy membership functionsto capture imprecision in quality, cost, and coordination overhead, while NSIMextends this to neutrosophic triples that also quantify indeterminacy and contra-diction. Finally, we explore how ITIL best practices can be fused with fuzzy andneutrosophic logic to create more adaptive, resilient service-management pro-cesses.Keywords:
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1. Preliminaries
This section provides an introduction to the foundational concepts and definitions required for thediscussions in this paper. In addition, all concepts addressed herein are assumed to be finite ratherthan infinite.
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1.1 Fuzzy Set and Neutrosophic Set
1.1.1 Fuzzy Set

A fuzzy set assigns to each element a degree of membership in the interval [0, 1], thus enabling therepresentation of uncertainty through a continuum of partial membership values, rather than relyingon strict binary classification [(1), (2)]. Related concepts include the Intuitionistic Fuzzy Set [(3), (4)],Picture Fuzzy Set [(5)–(7)], Hesitant Fuzzy Set [(8)–(10)], and Bipolar Fuzzy Set [(11), (12)], all of whichprovide nuanced generalizations for handling different types of uncertainty.We present below the relevant definitions, including those of these extended frameworks.
Definition 1.1 (Universal Set). A universal set, denoted byU , is the set that contains all elements underconsideration in a particular context. Every set discussed is assumed to be a subset of U .
Definition 1.2 (Fuzzy Set). [(1), (13)] A Fuzzy set τ in a non-empty universe Y is a mapping τ : Y →
[0, 1]. A fuzzy relation on Y is a fuzzy subset δ in Y × Y . If τ is a fuzzy set in Y and δ is a fuzzy relationon Y , then δ is called a fuzzy relation on τ if

δ(y, z) ≤ min{τ(y), τ(z)} for all y, z ∈ Y.

Example 1.3 (Fuzzy Set for Employee Performance in Management). Let the universe of discourse be
Y = {Ayano, Shinya, Yutaka, Yasuha},

and define a fuzzy set τ on Y that represents “high performance” as judged by management. Specify
τ : Y → [0, 1] by

τ(Ayano) = 0.95,

τ(Shinya) = 0.75,

τ(Yutaka) = 0.60,

τ(Yasuha) = 0.30.

Here:
• τ(Ayano) = 0.95 indicates that Ayano is almost fully regarded as a high performer.
• τ(Shinya) = 0.75 reflects that Shinya is largely considered high-performing, butwith some reser-vations.
• τ(Yutaka) = 0.60 shows moderate performance in management’s view.
• τ(Yasuha) = 0.30means Yasuha is only weakly classified as a high performer.
If we also define a fuzzy relation δ on Y to capture “peer endorsement,” we require for all y, z ∈ Y :

δ(y, z) ≤ min{τ(y), τ(z)}.

For instance, if Ayano and Shinya endorse each other strongly, we might set
δ(Ayano, Shinya) = 0.70 ≤ min{0.95, 0.75} = 0.75.

This Fuzzy Setmodel allowsmanagement to rank, compare, andmake decisions that incorporate grad-ual judgments of employee performance.
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1.1.2 Neutrosophic Set

Neutrosophic Sets extend Fuzzy Sets by incorporating the concept of indeterminacy, thereby ad-dressing situations that are neither entirely true nor entirely false. This framework provides a moreflexible representation of uncertainty and ambiguity [(14)–(18)]. Their definitions are presented below.
Definition 1.4 (Neutrosophic Set). [(14), (19)] LetX be a non-empty set. A Neutrosophic Set (NS)A on
X is characterized by three membership functions:

TA : X → [0, 1], IA : X → [0, 1], FA : X → [0, 1],

where for each x ∈ X , the values TA(x), IA(x), and FA(x) represent the degrees of truth, indetermi-nacy, and falsity, respectively. These values satisfy the following condition:
0 ≤ TA(x) + IA(x) + FA(x) ≤ 3.

Example 1.5 (Neutrosophic Set for Supplier Reliability in Management). Consider the universe of dis-course
X = {Supplier A, Supplier B, Supplier C},

and letR be a Neutrosophic Set onX that models the reliability of each supplier from a managementperspective. Define the three membership functions TR, IR, and FR as follows:
TR(Supplier A) = 0.85, IR(Supplier A) = 0.10, FR(Supplier A) = 0.05,

TR(Supplier B) = 0.60, IR(Supplier B) = 0.25, FR(Supplier B) = 0.15,

TR(Supplier C) = 0.40, IR(Supplier C) = 0.30, FR(Supplier C) = 0.30.

Here:
• TR(x)measures the degree to which management believes x is reliable (truth),
• IR(x) captures the uncertainty or lack of information about x (indeterminacy),
• FR(x) quantifies the degree to which x is considered unreliable (falsity).
For example, Supplier A is judged highly reliable (TR = 0.85) with low uncertainty (IR = 0.10)and minimal unreliability (FR = 0.05). In contrast, Supplier C has moderate reliability (TR = 0.40),significant uncertainty (IR = 0.30), and equally significant doubts (FR = 0.30). This Neutrosophicrepresentation allows management to make procurement decisions that explicitly account for bothconfidence and ambiguity in supplier assessments.

2. Main Results of This Paper
The results of this paper are presented as follows.

2.1 Mathematical Framework of Service Integration and Management
We present a formal specification of the SIAM paradigm, in which multiple vendors are coordinatedto deliver integrated IT services to business users [(20)–(23)]. Classical ITSM frameworks have alsobeen studied extensively [(24)–(26)].

Definition 2.1 (Mathematical Framework for SIAM). Let
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• S = {s1, . . . , sn} be the finite set of services;
• P = {p1, . . . , pm} be the finite set of providers;
• M : S → P(P ) \ {∅} assign to each s ∈ S the nonempty subset M(s) ⊆ P of providersdelivering s;
• for each s ∈ S and p ∈ M(s), let

– q(p, s) ∈ [0, 1] be the quality score of provider p for service s, and
– c(p, s) ∈ R+ be the cost charged by p for s;

• φ : P([0, 1]) → [0, 1] be an aggregation operator (e.g. the arithmeticmean) that fuses individualquality scores into a single composite rating;
• ξ : S → R+ denote the integrator’s coordination overhead.

Then the SIAM model is defined by the tuple
SIAM =

(
S, P, M, {q(p, s)}, {c(p, s)}, φ, ξ

)
.

For each s ∈ S, the overall service quality and total cost are given by
Q(s) = φ

(
{ q(p, s) : p ∈ M(s)}

)
, C(s) =

∑
p∈M(s)

c(p, s) + ξ(s).

Remark 2.2. Traditional ITSM centralizes service delivery within a single organization, whereas SIAMexplicitly maps each service to multiple providers viaM , merges their quality metrics through φ, andincorporates the integrator’s coordination overhead ξ into the cost.
Example 2.3 (Cloud Hosting under SIAM). A cloud hosting service offers scalable compute and storageon demand [(27)–(29)]. Suppose service s1 is delivered by providers p1 and p2, so

M(s1) = {p1, p2}.

If
q(p1, s1) = 0.9, q(p2, s1) = 0.8,

then using the arithmetic mean,
Q(s1) =

0.9 + 0.8

2
= 0.85.

Likewise, if
c(p1, s1) = 200, c(p2, s1) = 250, ξ(s1) = 50,

it follows that
C(s1) = 200 + 250 + 50 = 500.

Example 2.4 (Enterprise Email Service via SIAM). An organization requires a reliable, business-criticalemail service. It engages two providers:
S = { semail }, P = {ExchangeCo, GMailCorp}.

The mapping is
M(semail) = {ExchangeCo, GMailCorp}.
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Suppose the measured quality scores and costs are:

q(ExchangeCo, semail) = 0.95, c(ExchangeCo, semail) = $1 000;

q(GMailCorp, semail) = 0.90, c(GMailCorp, semail) = $1 200.

The integrator’s coordination overhead is ξ(semail) = $250. Using the arithmetic mean for φ,
Q(semail) = 0.95 + 0.90

2
= 0.925,

C(semail) = 1 000 + 1 200 + 250 = $2 450.

Thus, the enterprise email service achieves overall quality 0.925 at a total operational cost of $2,450under the SIAM model.
Theorem 2.5 (Bounded Overall Quality). Let φ : P([0, 1]) → [0, 1] satisfy

minX ≤ φ(X) ≤ maxX for every nonemptyX ⊆ [0, 1].

Then for each service s ∈ S,
min

p∈M(s)
q(p, s) ≤ Q(s) ≤ max

p∈M(s)
q(p, s).

Proof. Define the set of quality scores for service s by
Xs = { q(p, s) | p ∈ M(s)}.

Since M(s) ̸= ∅, Xs is nonempty and Xs ⊆ [0, 1]. By the model definition,
Q(s) = φ

(
Xs

)
.

Applying the bounding property of φ to Xs yields
minXs ≤ φ(Xs) ≤ maxXs,

i.e.
min

p∈M(s)
q(p, s) ≤ Q(s) ≤ max

p∈M(s)
q(p, s),

as claimed.
Theorem 2.6 (Monotonicity of Overall Quality). Assume φ is non-decreasing in each argument: if
(x1, . . . , xn) and (x′

1, . . . , x
′
n) satisfy xi ≤ x′

i for all i, then
φ({x1, . . . , xn}) ≤ φ({x′

1, . . . , x
′
n}).

Fix a service s and suppose one provider p ∈ M(s) improves its quality from q(p, s) to q′(p, s) >
q(p, s), with all other q(r, s) unchanged. Denote

X = {q(r, s) | r ∈ M(s)}, X ′ =
(
X \ {q(p, s)}

)
∪ {q′(p, s)}.

ThenX ≤ X ′ coordinatewise, so by monotonicity of φ,
Q(s) = φ(X) ≤ φ(X ′) = Q′(s),

showing thatQ(s) cannot decrease when any single provider’s quality increases.
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Proof. Let us enumerate M(s) = {p1, . . . , pk} so that p1 = p is the provider whose score increases.Define

xi = q(pi, s), x′
1 = q′(p, s), x′

i = xi (i > 1).

Then xi ≤ x′
i for all i, and

X = {x1, . . . , xk}, X ′ = {x′
1, . . . , x

′
k}.

By assumption on φ,
φ(X) ≤ φ(X ′).

By definition, φ(X) = Q(s) and φ(X ′) = Q′(s), so Q(s) ≤ Q′(s), as required.
Theorem 2.7 (Singleton Reduction). If for some service s ∈ S the integrator uses exactly one provider,
M(s) = {p}, then

Q(s) = q(p, s), C(s) = c(p, s) + ξ(s).

Proof. When M(s) = {p}, the set of quality scores is Xs = {q(p, s)}. Any aggregation operator φthat operates on a singleton must return that singleton value, i.e.
Q(s) = φ

(
{q(p, s)}

)
= q(p, s).

Similarly, by the cost definition,
C(s) =

∑
r∈M(s)

c(r, s) + ξ(s) = c(p, s) + ξ(s).

This completes the proof.
Theorem 2.8 (Strict Monotonicity of Total Cost). For each service s ∈ S, the total cost

C(s) =
∑

p∈M(s)

c(p, s) + ξ(s)

is strictly increasing in each individual cost c(p, s) and in the overhead ξ(s).
Proof. View C(s) as a function of the variables {c(p, s) | p ∈ M(s)} and ξ(s):

C(s; c1, . . . , ck, ξ) = c1 + · · ·+ ck + ξ.

If any one cost ci increases by a positive increment δ > 0, then
C(s; c1, . . . , ci + δ, . . . , ck, ξ) =

(
c1 + · · ·+ ci + · · ·+ ck + ξ

)
+ δ = C(s) + δ > C(s).

Similarly, increasing ξ by any ϵ > 0 raises C(s) by ϵ. Hence C(s) is strictly increasing in each of itsarguments.
2.2 Fuzzy Service Integration and Management

Fuzzy Service Integration and Management extends SIAM by modeling service quality, cost, andoverhead as fuzzy values to manage uncertainty. The definitions and related concepts of Fuzzy ServiceIntegration and Management are provided below.
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Definition 2.9 (Mathematical Framework for Fuzzy Service Integration and Management). To extendthe above framework to capture uncertainty, we define the Fuzzy Service Integration and Management(FSIM) system as follows. In this extension:

• The set S of services, the set P of providers, the mappingM , and the overhead cost function ξremain as in the conventional framework.
• For each service s ∈ S and each provider p ∈ M(s), we now assign a fuzzy quality q̃(p, s) and afuzzy cost c̃(p, s), each represented as a fuzzy number (for example, a triangular fuzzy number)that belongs to the appropriate domain (i.e., q̃(p, s) ⊆ [0, 1] and c̃(p, s) ⊆ R+).
• Let φ̃ be a fuzzy aggregation operator that combines a set of fuzzy quality values into a singlefuzzy quality value.

Then, the FSIM system is modeled by the tuple
FSIM =

(
S, P, M, {q̃(p, s)}p∈M(s), s∈S, {c̃(p, s)}p∈M(s), s∈S, φ̃, ξ̃

)
,

where ξ̃ : S → P̃ (R+) is a fuzzy integration overhead cost function. For each service s ∈ S, theoverall fuzzy quality and fuzzy cost are defined as:
Q̃(s) = φ̃

(
{q̃(p, s) : p ∈ M(s)}

)
,

C̃(s) =
⊕

p∈M(s)

c̃(p, s)⊕ ξ̃(s),

where⊕ denotes the fuzzy addition operation.
Example 2.10 (Cloud Hosting Service via Fuzzy Service Integration and Management). Consider a cloudhosting service s1 delivered by two providers p1 and p2; hence,

M(s1) = {p1, p2}.

Assume the following fuzzy evaluations:
Fuzzy Quality:

• q̃(p1, s1) is represented by the triangular fuzzy number (0.85, 0.90, 0.95).
• q̃(p2, s1) is represented by the triangular fuzzy number (0.80, 0.85, 0.90).

Using a simple aggregation operator (for instance, the arithmetic mean of the modal values), theoverall fuzzy quality for s1 is approximated by
Q̃(s1) ≈

(
0.85 + 0.80

2
,
0.90 + 0.85

2
,
0.95 + 0.90

2

)
= (0.825, 0.875, 0.925).

Fuzzy Cost: Suppose:
• c̃(p1, s1) is given by the triangular fuzzy number (180, 200, 220) dollars.
• c̃(p2, s1) is given by the triangular fuzzy number (190, 210, 230) dollars.
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Assume the fuzzy integration overhead for the service is

ξ̃(s1) = (30, 40, 50) dollars.
The overall fuzzy cost is obtained via fuzzy addition:

C̃(s1) = c̃(p1, s1)⊕ c̃(p2, s1)⊕ ξ̃(s1).

Using fuzzy addition on triangular fuzzy numbers (which is defined componentwise), we have
C̃(s1) = (180 + 190 + 30, 200 + 210 + 40, 220 + 230 + 50) = (400, 450, 500) dollars.

Thus, the cloud hosting service provided by the two vendors has an overall fuzzy quality of approx-imately (0.825, 0.875, 0.925) and an overall fuzzy cost of (400, 450, 500) dollars.
Example 2.11 (Online Banking Service via FSIM). An online banking service provides secure electronicaccess to financial accounts, letting users manage balances, make payments, and transact remotely(cf.[(30), (31)]). Consider an online banking service, denoted by sbank, which is provided by twoproviders
p1 and p2:

M(sbank) = {p1, p2}.

Assume the following fuzzy evaluations:
Fuzzy Quality:

• q̃(p1, sbank) is expressed as the triangular fuzzy number (0.90, 0.92, 0.94).
• q̃(p2, sbank) is expressed as (0.85, 0.88, 0.91).

Using a fuzzy aggregation operator (e.g., the arithmetic mean of the modal values), the overall fuzzyquality for sbank is approximated by:
Q̃(sbank) ≈

(
0.90 + 0.85

2
,
0.92 + 0.88

2
,
0.94 + 0.91

2

)
= (0.875, 0.90, 0.925).

Fuzzy Cost:

• c̃(p1, sbank) is given by the triangular fuzzy number (300, 320, 340) dollars.
• c̃(p2, sbank) is given by (250, 270, 290) dollars.

Assume the fuzzy integration overhead cost is:
ξ̃(sbank) = (50, 60, 70) dollars.

Then, using fuzzy addition (performed componentwise), the overall fuzzy cost is:
C̃(sbank) = c̃(p1, sbank)⊕ c̃(p2, sbank)⊕ ξ̃(sbank)

= (300 + 250 + 50, 320 + 270 + 60, 340 + 290 + 70) = (600, 650, 700) dollars.
Thus, the online banking service has an overall fuzzy quality of approximately (0.875, 0.90, 0.925)and a fuzzy cost of (600, 650, 700) dollars.
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Example 2.12 (Public Utility Payment Service via FSIM). Consider a public utility payment service, de-noted spayment, which is delivered by two providers p1 and p2:

M(spayment) = {p1, p2}.

Assume the following fuzzy evaluations:
Fuzzy Quality:

• q̃(p1, spayment) is represented by the triangular fuzzy number (0.80, 0.85, 0.90).
• q̃(p2, spayment) is represented by (0.75, 0.80, 0.85).

Aggregating via the arithmetic mean, the overall fuzzy quality is:
Q̃(spayment) ≈

(
0.80 + 0.75

2
,
0.85 + 0.80

2
,
0.90 + 0.85

2

)
= (0.775, 0.825, 0.875).

Fuzzy Cost:

• c̃(p1, spayment) is given by (150, 160, 170) dollars.
• c̃(p2, spayment) is given by (140, 150, 160) dollars.

Assume the fuzzy integration overhead cost is:
ξ̃(spayment) = (20, 25, 30) dollars.

Then the overall fuzzy cost is computed by:
C̃(spayment) = (150 + 140 + 20, 160 + 150 + 25, 170 + 160 + 30) = (310, 335, 360) dollars.
Thus, the public utility payment service is characterized by anoverall fuzzy quality of (0.775, 0.825, 0.875)and an overall fuzzy cost of (310, 335, 360) dollars.

Theorem2.13. TheMathematical Framework for Fuzzy Service IntegrationandManagement,FSIM,generalizes the conventionalMathematical Framework for Service Integration andManagement by in-corporating fuzzy uncertainty. Specifically, if every fuzzy number q̃(p, s), c̃(p, s), and ξ̃(s) degenerateto a singleton (i.e., q̃(p, s) = {q(p, s)}, etc.), then FSIM reduces exactly to the conventional frame-work. Moreover, by construction, the fuzzy functions used in FSIM exhibit the structure of fuzzysets.
Proof. Assume that for every service s ∈ S and every provider p ∈ M(s), the fuzzy quality and costvalues are degenerate fuzzy numbers, that is,

q̃(p, s) = {q(p, s)}, c̃(p, s) = {c(p, s)}, and ξ̃(s) = {ξ(s)}.

Then the fuzzy aggregation operator φ̃ becomes the standard aggregation operator φ, and fuzzy ad-dition ⊕ reduces to standard addition. Consequently, for each service s:
Q̃(s) =

{
φ
(
{q(p, s) : p ∈ M(s)}

)}
= {Q(s)},

C̃(s) =
{ ∑

p∈M(s)

c(p, s) + ξ(s)
}
= {C(s)}.
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Thus, the FSIM tuple simplifies to:

FSIM =
(
S, P, M, {q(p, s)}, {c(p, s)}, φ, ξ

)
,

which is exactly the conventional Mathematical Framework for Service Integration and Management.Furthermore, by definition, the mappings q̃ : S × P → P̃ ([0, 1]), c̃ : S × P → P̃ (R+), and
ξ̃ : S → P̃ (R+) are fuzzy set mappings. They assign to each element of their domain a fuzzy number(a set of possible values with degrees of membership), thereby endowing FSIM with a fuzzy setstructure.This proves that FSIM generalizes the conventional framework and possesses the inherentstructure of fuzzy sets.
Theorem 2.14 (Degeneracy Theorem). If for every service s ∈ S and each provider p ∈ M(s) the fuzzynumbers degenerate to singletons, i.e.,

q̃(p, s) = {q(p, s)}, c̃(p, s) = {c(p, s)}, ξ̃(s) = {ξ(s)},

then the FSIM framework reduces exactly to the conventional Mathematical Framework for ServiceIntegration and Management, where
Q(s) = φ

(
{q(p, s) : p ∈ M(s)}

) and C(s) =
∑

p∈M(s)

c(p, s) + ξ(s).

Proof. Assume for every s ∈ S and p ∈ M(s),
q̃(p, s) = {q(p, s)}, c̃(p, s) = {c(p, s)}, ξ̃(s) = {ξ(s)}.

Since the fuzzy aggregation operator φ̃ is defined to operate on sets of fuzzy numbers, when each setconsists of a single element, φ̃ reduces to the standard aggregation operator φ. That is,
Q̃(s) = φ̃

(
{q̃(p, s) : p ∈ M(s)}

)
= {φ({q(p, s) : p ∈ M(s)})} = {Q(s)}.

Similarly, fuzzy addition ⊕ on singletons reduces to ordinary addition, so that
C̃(s) =

⊕
p∈M(s)

c̃(p, s)⊕ ξ̃(s) =

 ∑
p∈M(s)

c(p, s) + ξ(s)

 = {C(s)}.

Thus, the FSIM tuple becomes
FSIM =

(
S, P, M, {q(p, s)}p∈M(s), s∈S, {c(p, s)}p∈M(s), s∈S, φ, ξ

)
,

which is exactly the conventional framework for Service Integration and Management.
Theorem 2.15 (Monotonicity of the Fuzzy Aggregation Operator). Assume that for a given service s ∈
S and for every provider p ∈ M(s) the fuzzy quality values satisfy

q̃1(p, s) ≤ q̃2(p, s),

in the sense that the defuzzified (center-of-gravity) value of q̃1(p, s) is less than or equal to that of
q̃2(p, s). If the fuzzy aggregation operator φ̃ is monotonic (i.e., it preserves this ordering), then

Q̃1(s) = φ̃
(
{q̃1(p, s) : p ∈ M(s)}

)
≤ φ̃

(
{q̃2(p, s) : p ∈ M(s)}

)
= Q̃2(s),

meaning the overall fuzzy quality for s obtained via q̃1 is less than or equal to that obtained via q̃2.
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Proof. Let q∗1(p, s) and q∗2(p, s) denote the defuzzified (e.g., centroid) values of q̃1(p, s) and q̃2(p, s)respectively, and assume q∗1(p, s) ≤ q∗2(p, s) for all p ∈ M(s). Monotonicity of the fuzzy aggregationoperator φ̃ implies that if every element in the set {q̃1(p, s) : p ∈ M(s)} is less than or equal to thecorresponding element in {q̃2(p, s) : p ∈ M(s)} (in terms of defuzzified values), then

φ̃
(
{q̃1(p, s) : p ∈ M(s)}

)
≤ φ̃

(
{q̃2(p, s) : p ∈ M(s)}

)
.

This ordering is preserved when we defuzzify the aggregated fuzzy quality. Hence, the overall qualitymeasurement Q̃(s) is monotonic with respect to the individual fuzzy quality inputs. This completesthe proof.
2.3 Neutrosophic Service Integration and Management

Neutrosophic Service Integration and Management generalizes SIAM by representing quality, cost,integration with neutrosophic triples capturing truth, indeterminacy, and falsity. The definitions andrelated concepts of Neutrosophic Service Integration and Management are provided below.
Definition 2.16 (Mathematical Framework for Neutrosophic Service Integration and Management).To incorporate uncertainty more richly, we extend the above framework to the neutrosophic domain.In the Neutrosophic Service Integration and Management (NSIM) framework, uncertainty is modeledusing neutrosophic numbers—that is, triples capturing degrees of truth, indeterminacy, and falsity.Specifically, we define:

• The sets S, P , and the mappingM : S → P(P )\{∅} remain as in the conventional framework.
• For each service s ∈ S and each provider p ∈ M(s), a neutrosophic quality is assigned:

q̃N(p, s) ∈ NS([0, 1]),

where a neutrosophic number is a triple
q̃N(p, s) =

(
Tq(p, s), Iq(p, s), Fq(p, s)

)
,

with Tq(p, s), Iq(p, s), Fq(p, s) ∈ [0, 1] and
0 ≤ Tq(p, s) + Iq(p, s) + Fq(p, s) ≤ 3.

• Similarly, for cost we define a neutrosophic cost:
c̃N(p, s) ∈ NS(R+),

and for the integration overhead,
ξ̃N(s) ∈ NS(R+).

• Let φ̃N be a neutrosophic aggregation operator that combines a set of neutrosophic qualitynumbers into a single neutrosophic quality measure.
Thus, the NSIM framework is modeled as the tuple

NSIM =
(
S, P, M, {q̃N(p, s)}p∈M(s), s∈S, {c̃N(p, s)}p∈M(s), s∈S, φ̃N , ξ̃N

)
.
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For each service s ∈ S, we define the overall neutrosophic quality and cost as:

Q̃N(s) = φ̃N

(
{q̃N(p, s) : p ∈ M(s)}

)
,

C̃N(s) =
⊕

p∈M(s)

c̃N(p, s)⊕ ξ̃N(s),

where⊕ denotes the neutrosophic addition operation on neutrosophic numbers.This framework generalizes conventional Service Integration and Management by representingquality, cost, and overhead as neutrosophic numbers—thereby explicitly modeling uncertainty (truth),indeterminacy, and falsity.
Example 2.17 (Cloud Hosting Service via Neutrosophic Service Integration and Management). Considera cloud hosting service s1 provided by two vendors, p1 and p2, so that:

M(s1) = {p1, p2}.

Neutrosophic Quality: Assume the quality of service provided by each vendor is assessed as aneutrosophic number:
• q̃N(p1, s1) =

(
0.85, 0.10, 0.05

),
• q̃N(p2, s1) =

(
0.80, 0.15, 0.05

).
Using a neutrosophic aggregation operator (for example, an average of the truth values while appro-priately combining indeterminacy and falsity), we obtain the overall neutrosophic quality for s1:

Q̃N(s1) ≈
(
0.825, 0.125, 0.05

)
.

Neutrosophic Cost: Assume the cost incurred by each vendor is given by:
• c̃N(p1, s1) =

(
180, 0.05, 0.15

) dollars,
• c̃N(p2, s1) =

(
190, 0.05, 0.15

) dollars.
Let the fuzzy (neutrosophic) integration overhead be:

ξ̃N(s1) =
(
30, 0.10, 0.10

) dollars.
Assuming neutrosophic addition is performed componentwise, the overall neutrosophic cost is:

C̃N(s1) =
(
180 + 190 + 30, 0.05 + 0.05 + 0.10, 0.15 + 0.15 + 0.10

)
= (400, 0.20, 0.40).

Here, the first component represents the aggregated cost; the second and third components reflectthe aggregated degrees of indeterminacy and falsity in cost estimations.
Interpretation: This example demonstrates a cloud hosting service where the overall quality is ex-pressed as a neutrosophic number (0.825, 0.125, 0.05) (indicating high quality with some uncertainty)and the total cost is represented as (400, 0.20, 0.40) dollars. The use of neutrosophic numbers en-ables the decision-maker to capture not only the estimated cost and quality but also the uncertainty(indeterminacy) and error (falsity) associated with these estimates.If the neutrosophic evaluations were to collapse to single values with no uncertainty (i.e., indeter-minacy equal to 0, and falsity equal to 1− truth), then this frameworkwould reduce to the conventionalFuzzy Service Integration and Management model.

172



Journal of Intelligent Decision Making and Granular ComputingsVolume 1, Issue 1 (2025) 161-198
Example 2.18 (Online Banking Service via NSIM). Consider an online banking service sbank provided bytwo vendors, p1 and p2:

M(sbank) = {p1, p2}.

Neutrosophic Quality: Assume the quality of each provider is evaluated as follows:
q̃N(p1, sbank) = (0.92, 0.05, 0.03), q̃N(p2, sbank) = (0.88, 0.07, 0.05).

Using a neutrosophic aggregation operator (for instance, an arithmetic mean on the truth compo-nents while appropriately combining the indeterminacy and falsity), the overall neutrosophic qualityis approximately:
Q̃N(sbank) ≈

(
0.92 + 0.88

2
, aggregated I, aggregated F

)
= (0.90, 0.06, 0.04).

Neutrosophic Cost: Assume the cost incurred by each vendor is given by:
c̃N(p1, sbank) = (320, 0.03, 0.07) dollars, c̃N(p2, sbank) = (280, 0.04, 0.06) dollars.

Let the fuzzy integration overhead be:
ξ̃N(sbank) = (40, 0.02, 0.04) dollars.

Then, using neutrosophic addition (componentwise addition on the crisp parts while combining theuncertainty components accordingly), the overall neutrosophic cost is:
C̃N(sbank) ≈ (320 + 280 + 40, 0.03 + 0.04 + 0.02, 0.07 + 0.06 + 0.04) = (640, 0.09, 0.17) dollars.
This evaluation reflects an overall quality of approximately (0.90, 0.06, 0.04)anda total cost of around640 dollars with the indicated uncertainty levels.
Example 2.19 (CRM System via NSIM). Customer RelationshipManagement (CRM) is a comprehensivestrategy for managing and analyzing customer interactions to enhance relationships and business out-comes (cf.[(32)–(34)]). Consider a Customer RelationshipManagement (CRM) system sCRM provided bytwo vendors p1 and p2:

M(sCRM) = {p1, p2}.

Neutrosophic Quality: Suppose:
q̃N(p1, sCRM) = (0.85, 0.12, 0.03),

q̃N(p2, sCRM) = (0.80, 0.10, 0.10).

Using an appropriate neutrosophic aggregation, we obtain:
Q̃N(sCRM) ≈

(
0.85 + 0.80

2
, aggregated I, aggregated F

)
= (0.825, 0.11, 0.065).

Neutrosophic Cost: Assume:
c̃N(p1, sCRM) = (150, 0.04, 0.06) dollars,
c̃N(p2, sCRM) = (140, 0.05, 0.05) dollars.
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Let the integration overhead be:

ξ̃N(sCRM) = (20, 0.03, 0.02) dollars.
Then the overall neutrosophic cost is computed as:

C̃N(sCRM) = (150 + 140 + 20, 0.04 + 0.05 + 0.03, 0.06 + 0.05 + 0.02)

= (310, 0.12, 0.13) dollars.
Thus, the CRM system achieves an overall neutrosophic quality of about (0.825, 0.11, 0.065) and anoverall cost of approximately (310, 0.12, 0.13) dollars.
Example 2.20 (Online Gaming Service via NSIM). An online gaming system is a platform enablinginteractive digital games, often in real time, globally connecting players and competitions [(35), (36)].Consider an online gaming service sgame offered by three providers p1, p2, and p3:

M(sgame) = {p1, p2, p3}.

Neutrosophic Quality: Assume the following quality evaluations (triangular neutrosophic numbers):
q̃N(p1, sgame) = (0.90, 0.05, 0.05),

q̃N(p2, sgame) = (0.85, 0.10, 0.05),

q̃N(p3, sgame) = (0.88, 0.07, 0.05).

Using a simple average for the truth components (and combining the uncertainty components appro-priately), the overall quality is approximated as:
Q̃N(sgame) ≈

(
0.90 + 0.85 + 0.88

3
, aggregated I, aggregated F

)
≈ (0.8767, 0.07, 0.05).

Neutrosophic Cost: Suppose the cost evaluations are:
c̃N(p1, sgame) = (200, 0.05, 0.05),

c̃N(p2, sgame) = (180, 0.04, 0.06),

c̃N(p3, sgame) = (190, 0.06, 0.04).

Assume the integration overhead is:
ξ̃N(sgame) = (50, 0.03, 0.02).

Then, the overall neutrosophic cost is:
C̃N(sgame) = (200 + 180 + 190 + 50, 0.05 + 0.04 + 0.06 + 0.03,

0.05 + 0.06 + 0.04 + 0.02) = (620, 0.18, 0.17).

This shows that the online gaming service has an overall neutrosophic quality of approximately
(0.877, 0.07, 0.05) and a total cost of about (620, 0.18, 0.17) dollars.
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Theorem 2.21. The Mathematical Framework for Neutrosophic Service Integration and Management(NSIM) generalizes the conventional (fuzzy) Service IntegrationandManagement framework. Specif-ically, if for every s ∈ S and each provider p ∈ M(s) the neutrosophic values degenerate to singletonswith no indeterminacy (i.e.,

q̃N(p, s) = {(q(p, s), 0, 1− q(p, s))},

c̃N(p, s) = {(c(p, s), 0, 1− c(p, s))},
ξ̃N(s) = {(ξ(s), 0, 1− ξ(s))} )

then NSIM reduces exactly to the conventional Mathematical Framework for Service Integrationand Management. Moreover, by their very construction, the mappings q̃N , c̃N , and ξ̃N exhibit thestructure of neutrosophic sets.
Proof. Assume that for every s ∈ S and p ∈ M(s) the neutrosophic values are degenerate, so that

q̃N(p, s) = {(q(p, s), 0, 1− q(p, s))}, c̃N(p, s) = {(c(p, s), 0, 1− c(p, s))},

and
ξ̃N(s) = {(ξ(s), 0, 1− ξ(s))}.

In this case, the neutrosophic aggregation operator φ̃N becomes equivalent to the standard (crisp)aggregation operator φ, and the neutrosophic addition ⊕ reduces to ordinary addition. Thus, foreach service s ∈ S we have:
Q̃N(s) =

{
φ
(
{q(p, s) : p ∈ M(s)}

)}
= {Q(s)},

C̃N(s) =
{ ∑

p∈M(s)

c(p, s) + ξ(s)
}
= {C(s)}.

Hence, the NSIM tuple simplifies to:
NSIM =

(
S, P, M, {q(p, s)}, {c(p, s)}, φ, ξ

)
,

which is exactly the conventional framework.Furthermore, by definition, the mappings q̃N : S×P → NS([0, 1]), c̃N : S×P → NS(R+), and
ξ̃N : S → NS(R+) assign to each input a neutrosophic number (a triple (T, I, F ) satisfying the neu-trosophic conditions). Thus, the NSIM framework inherently possesses the structure of a neutrosophicset.This completes the proof.
Theorem 2.22 (Truth-Component Boundedness). Let φ̃N be a neutrosophic aggregation operatorwhich, when applied to any nonempty finite collection of truth-values {T1, . . . , Tk}, satisfies

min
1≤i≤k

Ti ≤ T
(
φ̃N({(Ti, Ii, Fi)})

)
≤ max

1≤i≤k
Ti.

Then for each service s ∈ S, if
q̃N(p, s) = (Tq(p, s), Iq(p, s), Fq(p, s))

(
p ∈ M(s)

)
,

and
Q̃N(s) = φ̃N

(
{q̃N(p, s)}

)
= (TQ(s), IQ(s), FQ(s)),

we have
min

p∈M(s)
Tq(p, s) ≤ TQ(s) ≤ max

p∈M(s)
Tq(p, s).
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Proof. Set

T = {Tq(p, s) | p ∈ M(s)}.

Since M(s) ̸= ∅, T is nonempty. By definition of φ̃N ,
TQ(s) = T

(
φ̃N({q̃N(p, s)})

)
= φT (T ),

where φT is the truth-component aggregator. By the stated property of φT ,
min T ≤ φT (T ) ≤ max T .

Hence
min

p∈M(s)
Tq(p, s) ≤ TQ(s) ≤ max

p∈M(s)
Tq(p, s),

as required.
Theorem 2.23 (Monotonicity of Truth and Indeterminacy). Suppose φ̃N is monotonic in its truth andindeterminacy components: if two collections of neutrosophic triples

{(Ti, Ii, Fi)} and {(T ′
i , I

′
i, F

′
i )}

satisfy
Ti ≤ T ′

i and Ii ≤ I ′i for all i,
then writing

φ̃N({(Ti, Ii, Fi)}) = (T, I, F ), φ̃N({(T ′
i , I

′
i, F

′
i )}) = (T ′, I ′, F ′),

we have
T ≤ T ′, I ≤ I ′.

Then in NSIM, if for a fixed service s each provider’s neutrosophic evaluations improve in truth andindeterminacy:
Tq(p, s) ≤ T ′

q(p, s), Iq(p, s) ≤ I ′q(p, s) (∀ p ∈ M(s)),

while falsities may correspondingly adjust, the aggregated values satisfy
TQ(s) ≤ T ′

Q(s), IQ(s) ≤ I ′Q(s),

where Q̃N(s) = (TQ(s), IQ(s), FQ(s)) and Q̃′
N(s) = (T ′

Q(s), I
′
Q(s), F

′
Q(s)).

Proof. Let
X = {q̃N(p, s) | p ∈ M(s)}, X ′ = {q̃′N(p, s) | p ∈ M(s)}.

By hypothesis,
Tq(p, s) ≤ T ′

q(p, s), Iq(p, s) ≤ I ′q(p, s) (∀ p).

Applying the monotonicity of φ̃N yields
φ̃N(X) = (TQ, IQ, FQ) ≤n φ̃N(X

′) = (T ′
Q, I

′
Q, F

′
Q),

which by definition means
TQ ≤ T ′

Q, IQ ≤ I ′Q.

This establishes the desired monotonicity in the truth and indeterminacy components.
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Theorem 2.24 (Degenerate Reduction to Fuzzy SIAM). If for every s ∈ S and p ∈ M(s) the neutro-sophic evaluations collapse to

q̃N(p, s) =
(
q(p, s), 0, 1− q(p, s)

)
, c̃N(p, s) =

(
c(p, s), 0, 1− c(p, s)

)
,

and likewise ξ̃N(s) = (ξ(s), 0, 1−ξ(s)), then NSIM reduces exactly to the original (fuzzy) SIAM frame-work.
Proof. Under the collapse I ≡ 0, F ≡ 1−T , each neutrosophic triple (T, 0, 1−T ) encodes preciselythe fuzzy membership T ∈ [0, 1]. Moreover:

• Neutrosophic aggregation
φ̃N

(
{(qi, 0, 1− qi)}

)
=

(
φ({qi}), 0, 1− φ({qi})

)
projects to φ({qi}).

• Neutrosophic addition
(c, 0, 1− c)⊕ (c′, 0, 1− c′) =

(
c+ c′, 0, 1− (c+ c′)

)
projects to ordinary sum c+ c′.

Applying these reductions to all quality, cost, and overhead terms shows that
Q̃N(s) 7→ Q(s), C̃N(s) 7→ C(s),

and the NSIM tuple becomes identical with the SIAM tuple. Hence NSIM degenerates to SIAM.
2.4 Mathematical Framework for ITIL 4 Framework

ITIL 4 is the latest evolution of the ITIL framework, emphasizing value co-creation, flexibility, andholistic service management practices (cf.[(37), (38)]). The definitions and related concepts of Math-ematical Framework for ITIL 4 Framework are provided below.
Definition 2.25 (ITIL 4 Framework). We define the ITIL 4 framework as a 5-tuple

ITIL4 = (G, C, T, P , I),

with the following components:
1. Guiding Principles:

G = {g1, g2, . . . , gr}.

Each guiding principle gi is modeled as a predicate function
gi : R → {0, 1},

so that for any quantitative measure x, gi(x) = 1 indicates that the value x adheres to theprinciple (for example, “Focus on Value”) and gi(x) = 0 otherwise.
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2. Governance Constraints:

C = {c1, c2, . . . , cs},

where each constraint cj is expressed as an inequality on a service quality metric q ∈ [0, 100].For example, one fundamental constraint is:
c1 : q ≥ 80.

To compute q, we assume a function
q = f(y),

where y ∈ R is the output produced by the service value chain.
3. Service Value Chain: The transformation function

T : Rn → Rm

represents the service value chain that converts an input resource vector x ∈ Rn into an output
y ∈ Rm. In ITIL 4, T is implemented by the sequential application (composition) of a set ofpractices:

T (x) = (pk ◦ pk−1 ◦ · · · ◦ p1)(x).

4. Practices: The set of practices is defined by
P = {p1, p2, . . . , pk},

where each practice pi is a function:
pi : Rni → Rmi .

Each pi adds operational functionality and value; their composition yields the overall transfor-mation T .
5. Continual Improvement: The continual improvement function is defined as

I : N0 → R,

mapping a discrete time index t ∈ N0 (measured in months, for instance) to an improvementincrement I(t), with the properties:
I(0) = 0, and I(t) > 0 for t > 0.

Thus, an improved service value after time t is given by:
Vimproved(t) = V + I(t),

where V = T (x) is the base value resulting from the transformation.
Additionally, the framework is designed to maximize a service value function

v : Rm → R≥0,

so that
v(y) = v

(
T (x)

) subject to: gi(x) = 1 ∀ gi ∈ G and cj(f(y)) holds ∀ cj ∈ C.
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Example 2.26 (Concrete ITIL 4 Model). We now specify a concrete instance of the ITIL 4 framework.

1. Guiding Principle: Let
G = {g1}, with g1(x) =

{
1, if x > 0,

0, if x ≤ 0.

This ensures that the input resource xmust be positive (“Focus on Value”).
2. Governance Constraint: Define

C = {c1} with c1 : q ≥ 80.

Let the service quality be given by the function:
q = f(y) = min

{
100,

y

4

}
.

Thus, to meet c1 we require:
y

4
≥ 80 =⇒ y ≥ 320.

3. Service Value Chain (Transformation Function): Suppose the transformation is composed of twopractices:
T (x) = p2

(
p1(x)

)
.

Define:
p1(x) = x+ 20 and p2(z) = 2z.

Then the overall transformation is:
T (x) = 2(x+ 20) = 2x+ 40.

4. Continual Improvement: Let the improvement function be linear in time:
I(t) = 5t, t ∈ N0.

5. Value Function: Assume the service value function is linear:
v(y) = y.

Step-by-Step Calculation:
(a) Initial Attempt with x = 50:

1. Check the guiding principle: Since 50 > 0, we have g1(50) = 1 (condition satisfied).
2. Compute the transformed value:

p1(50) = 50 + 20 = 70.

p2(70) = 2× 70 = 140.

Thus,
T (50) = 140.
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3. Evaluate quality:

q = min
{
100,

140

4

}
= min{100, 35} = 35.

Since 35 < 80, the governance constraint c1 is violated.
(b) Adjustment to Satisfy the Constraint:

1. In order to meet the quality constraint q ≥ 80, we require:
2x+ 40 ≥ 320 =⇒ 2x ≥ 280 =⇒ x ≥ 140.

2. Choose an adjusted input x = 150 (which satisfies x ≥ 140).
3. Recalculate the transformation:

p1(150) = 150 + 20 = 170.

p2(170) = 2× 170 = 340.

Therefore,
T (150) = 340.

4. Evaluate quality:
q = min

{
100,

340

4

}
= min{100, 85} = 85.

Now 85 ≥ 80, so the governance constraint c1 is met.
(c) Applying Continual Improvement:

1. For t = 3months,
I(3) = 5× 3 = 15.

2. The final improved service value is:
vfinal = T (150) + I(3) = 340 + 15 = 355.

Thus, with an adjusted input x = 150 and after 3 months of continual improvement, the ITIL 4framework produces a service value of 355while satisfying all guiding principles and governance con-straints.
Theorem 2.27 (Associativity of the Service Value Chain). If the service value chain is defined by thecomposition of practices

T (x) = pk
(
pk−1(· · · p1(x) · · · )

)
,

then for any re-grouping of the composition the result is identical. In particular, for 1 ≤ i < j ≤ k,(
pk ◦ · · · ◦ pj+1

)
◦
(
pj ◦ · · · ◦ pi

)
◦
(
pi−1 ◦ · · · ◦ p1

)
= pk ◦ · · · ◦ p1.

Proof. Function composition is associative: for any three functions f, g, h of compatible types,
f ◦ (g ◦ h) = (f ◦ g) ◦ h.

One applies this identity repeatedly to re-associate the k-fold composition
pk ◦

(
pk−1 ◦ (· · · ◦ (p1))

)
into any desired grouping. Since each reassociation preserves the overall mapping, all parenthesiza-tions yield the same T (x).
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Theorem 2.28 (Monotonicity of the Transformation). Suppose each practice

pi : Rni → Rmi

is non-decreasing in each coordinate (i.e. x ≤ y componentwise implies pi(x) ≤ pi(y)). Then thecomposite transformation
T = pk ◦ pk−1 ◦ · · · ◦ p1

is also non-decreasing: if x ≤ x′ in Rn then T (x) ≤ T (x′) in Rm.
Proof. We prove by induction on the number of practices. For k = 1, T = p1 is non-decreasing byassumption. Suppose the result holds for k − 1, so

Tk−1 = pk−1 ◦ · · · ◦ p1

is non-decreasing. Then
T (x) = pk

(
Tk−1(x)

)
,

and if x ≤ x′ then Tk−1(x) ≤ Tk−1(x
′) by the induction hypothesis, and hence

T (x) = pk
(
Tk−1(x)

)
≤ pk

(
Tk−1(x

′)
)
= T (x′)

by monotonicity of pk. Thus T is non-decreasing for all k.
Theorem 2.29 (Convexity of the Feasible Input Set). Suppose each guiding principle gi : Rn → {0, 1}and each governance constraint cj(f(T (x))) are given by linear inequalities:

gi(x) = 1 ⇐⇒ aTi x ≥ bi, cj(f(T (x))) ⇐⇒ dTj T (x) ≥ ej.

Then the set of all x ∈ Rn satisfying gi(x) = 1 for all i and cj(f(T (x))) for all j is a convex polyhedron.
Proof. Each condition aTi x ≥ bi defines a closed halfspace in Rn, which is convex. Likewise, dTj T (x) ≥
ej is equivalent to

(dTj ◦ T )(x) ≥ ej,

and since T is affine (composition of affine pi), dTj T (x) ≥ ej defines another halfspace. The intersec-tion of finitely many convex halfspaces is convex and polyhedral. Therefore the feasible input set
{x : aTi x ≥ bi, d

T
j T (x) ≥ ej ∀ i, j}

is a convex polyhedron.
Theorem 2.30 (Monotonic Continual Improvement). Let the base service value be V = T (x) ∈ Rand the improvement function I : N0 → R satisfy

I(0) = 0, I(t) > 0 for t > 0.

Define the improved value
Vimproved(t) = V + I(t).

Then Vimproved(t) is strictly increasing in t ∈ N0.
Proof. For t = 0, Vimproved(0) = V . For any t ≥ 0, since I(t+ 1) > I(t) ≥ 0, we have

Vimproved(t+ 1) = V + I(t+ 1) > V + I(t) = Vimproved(t).

Thus each increment in t yields a strictly larger improved value.
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Theorem 2.31 (Affinity of the Service Value Chain). If each practice pi : Rni → Rmi is an affine map

pi(x) = Aix+ bi,

with matrix Ai and vector bi, then the composite transformation
T (x) = (pk ◦ pk−1 ◦ · · · ◦ p1)(x)

is itself affine. In fact,
T (x) = Ax+ b,

where
A = Ak Ak−1 · · ·A1, b = AkAk−1 · · ·A2 b1 + AkAk−1 · · ·A3 b2 + · · · + bk.

Proof. We proceed by induction on the number of practices k.Base case (k = 1). Trivial, since T = p1 is affine by hypothesis.Inductive step. Suppose that for k − 1 practices
Tk−1(x) = A′ x+ b′,

where
A′ = Ak−1 · · ·A1, b′ =

k−1∑
i=1

(
Ak−1 · · ·Ai+1 bi

)
.

Then
T (x) = pk

(
Tk−1(x)

)
= Ak(A

′ x+ b′) + bk = (AkA
′)x+ (Akb

′ + bk).

Setting A = AkA
′ and b = Akb

′ + bk yields the claimed formula. This completes the induction.
Theorem 2.32 (Convexity of the Objective under Affine Transformation). Let T : Rn → Rm be theaffine transformation from the previous theorem, and let v : Rm → R be a convex function. Then thecomposite function

x 7−→ v
(
T (x)

)
is convex on Rn.
Proof. By definition, T (x) = Ax+ b for some matrix A and vector b. For any x, y ∈ Rn and λ ∈ [0, 1],
T
(
λx+(1−λ)y

)
= A

(
λx+(1−λ)y

)
+ b = λ

(
Ax+ b

)
+(1−λ)

(
Ay+ b

)
= λT (x)+ (1−λ)T (y).

Since v is convex,
v
(
λT (x) + (1− λ)T (y)

)
≤ λ v

(
T (x)

)
+ (1− λ) v

(
T (y)

)
.

Therefore,
v
(
T (λx+ (1− λ)y)

)
≤ λ v

(
T (x)

)
+ (1− λ) v

(
T (y)

)
,

establishing convexity of v ◦ T .
Theorem 2.33 (Existence of an Optimal Solution). Assume

• the feasible set
F =

{
x ∈ Rn

∣∣ gi(x) = 1 ∀ i, cj
(
f(T (x))

) holds ∀ j}
is nonempty, closed, and bounded (hence compact),
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• the objective function v ◦ T is continuous.

Then there exists at least one x∗ ∈ F at which
v
(
T (x∗)

)
= max

x∈F
v
(
T (x)

)
.

Proof. By Weierstrass’s theorem, any continuous real-valued function on a nonempty compact setattains its maximum. Here, F is compact by hypothesis and v ◦ T is continuous as a compositionof continuous functions (T is affine hence continuous, and v is continuous). Therefore there exists
x∗ ∈ F such that

v
(
T (x∗)

)
= max

x∈F
v
(
T (x)

)
.

This completes the proof.
2.5 Fuzzy ITIL 4 Framework

The Fuzzy ITIL 4 Framework represents guiding principles, constraints, practices, transformation,and improvement with fuzzy degrees, enabling nuanced, graded confidence. The definitions and re-lated concepts of Mathematical Framework for Fuzzy ITIL 4 Framework are provided below(cf.[(39)–(41)]).
Definition 2.34 (Fuzzy ITIL 4 Framework). The Fuzzy ITIL 4 Framework generalizes the crisp ITIL 4Framework by associating fuzzy membership values to each component. It is defined as the quintuple

ĨT IL4 =
(
G̃, C̃, T̃ , P̃ , Ĩ

)
,

with the following fuzzified components:
1. Fuzzy Guiding Principles: Let UG be the universe of all candidate guiding principles. Then G̃ is afuzzy subset of UG with membership function

µG̃ : UG → [0, 1].

A value of µG̃(g) = 1 indicates full adherence of principle g; values in (0, 1) reflect partial sup-port.
2. Fuzzy Governance Constraints: Assume the crisp governance constraints in C are conditions ona quality metric q. In the fuzzy model, the degree to which q satisfies the constraint is given bythe function

µC̃ : R → [0, 1].

For example, one may define

µC̃(q) =


0, q < 70,

q − 70

10
, 70 ≤ q ≤ 80,

1, q > 80.

3. Fuzzy Service Value Chain Transformation: The crisp transformation T : X → Y is extended toa fuzzy transformation T̃ . For each input x ∈ X , rather than outputting a single value T (x), weassociate a fuzzy set in Y . In many practical cases, one expresses
T̃ (x) = T (x) with an associated confidence degree µT̃ (x) ∈ [0, 1].
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4. Fuzzy Practices: The set of practices is fuzzified as

P̃ = {p̃1, p̃2, . . . , p̃k},

where each fuzzy practice p̃i : Zi → Wi is equipped with a membership function
µp̃i : Wi → [0, 1].

Their sequential (fuzzy) composition yields the overall transformation T̃ .
5. Fuzzy Continual Improvement: The improvement function is extended to the fuzzy domain as

Ĩ : N0 → R. Often the improvement is assumed to be fully confident, i.e., its associated degreeis 1.
Furthermore, a fuzzy service value function

ṽ : Y → [0, 1],

assigns to each output a fuzzy satisfaction level.
Example 2.35 (Concrete Instance of the Fuzzy ITIL 4 Framework). Consider the following instance:

1. Fuzzy Guiding Principle: Let the universe UG include the following principles:
UG = {“Focus on Value”, “Collaborate and Promote Visibility”, others}.

Define the membership function:

µG̃(g) =


1, if g = “Focus on Value”,
0.8, if g = “Collaborate and Promote Visibility”,
0.5, otherwise.

2. Fuzzy Governance Constraint: Let a quality metric q (with 0 ≤ q ≤ 100) be measured by thefunction
µC̃(q) =


0, q < 70,

q − 70

10
, 70 ≤ q ≤ 80,

1, q > 80.

For instance, if q = 85, then µC̃(85) = 1 (fully satisfied).
3. Fuzzy Service Value Chain Transformation: Assume the crisp transformation is given by

T (x) = 2(x+ 20).

Its fuzzy extension is represented by a confidence degree:
µT̃ (x) =

{
0.7, x < 100,

1, x ≥ 100.

For an input x = 150, we have
T (150) = 2(150 + 20) = 340 and µT̃ (150) = 1.
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4. Fuzzy Practice: Let there be a single fuzzy practice p̃1 defined by

p̃1(x) = x+ 20,

with an associated membership function (using a logistic model)
µp̃1(x) =

1

1 + e−0.1(x−50)
.

For x = 150, we calculate p̃1(150) = 170 and find that µp̃1(150) ≈ 0.98, indicating high confidence.
5. Fuzzy Continual Improvement: Define the fuzzy improvement function as

Ĩ(t) = 5t, t ∈ N0,

with full confidence (i.e., degree 1).
Step-by-Step Computation:

1. For input x = 150, the crisp transformation yields
T (150) = 2(150 + 20) = 340.

With µT̃ (150) = 1, the fuzzy transformation acts fully.
2. Suppose the quality metric is computed by

q = min{100, 340/4} = min{100, 85} = 85.

Therefore,
µC̃(85) = 1,

meaning the governance constraint is completely satisfied.
3. The fuzzy practice outputs:

p̃1(150) = 150 + 20 = 170,

with µp̃1(150) ≈ 0.98.
4. After t = 3months, the fuzzy improvement is

Ĩ(3) = 5× 3 = 15.

5. The final output is then:
yfinal = T (150) + Ĩ(3) = 340 + 15 = 355.

6. The fuzzy service value function is computed as
ṽ(355) =

355

355 + 50
≈ 0.876.

This example demonstrates how fuzzification adds graded confidence and satisfaction levels toevery stage of the ITIL 4 Framework, while still retaining the structure of the original crisp model.
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Theorem 2.36 (Reduction to the Crisp ITIL 4 Framework). If all the membership functions in the FuzzyITIL 4 Framework

ĨT IL4 =
(
G̃, C̃, T̃ , P̃ , Ĩ

)
are replaced by their characteristic functions (i.e., restricted to {0, 1}), then

ĨT IL4 ≡ (G, C, T, P , I).

Proof. Replacing a membership function µ : U → [0, 1] by its characteristic function χU means thatfor every u ∈ U

χU(u) =

{
1, if u satisfies the crisp condition,
0, otherwise.

Then:
• The fuzzy guiding principles G̃ become the crisp set G since for every g ∈ UG we have χG̃(g) ∈
{0, 1}.

• The fuzzy governance constraint µC̃(q) yields 1 when q meets the constraint and 0 otherwise,thereby reproducing the crisp constraint C.
• The fuzzy transformation T̃ (x) is equivalent to T (x) when the associated confidence degree
µT̃ (x) is either 0 or 1.

• Each fuzzy practice p̃i reduces to its crisp counterpart pi if µp̃i(w) ∈ {0, 1} for all w.
• The fuzzy continual improvement Ĩ becomes I when its improvement degree is binary.

Therefore, if every fuzzy component is degenerated to its binary (crisp) counterpart, the Fuzzy ITIL 4Framework reduces exactly to the traditional ITIL 4 Framework.
Theorem 2.37 (Min–Composition Property). Let

T̃ (x) = p̃k
(
p̃k−1(· · · p̃1(x) · · · )

)
be the fuzzy transformation obtained by composing k fuzzy practices. If each practice p̃i has member-ship function µi, and we define

µT̃ (x) = min
1≤i≤k

µi(xi),

where x1 = x and xi+1 = p̃i(xi), then
µT̃ (x) = min

{
µ1(x1), µ2(x2), . . . , µk(xk)

}
.

Proof. We prove by induction on k.Base case: For k = 1, T̃ = p̃1 and the definition gives
µT̃ (x) = µ1(x) = min{µ1(x)},

so the claim holds.Inductive step: Assume the result holds for (k − 1) practices. Write
T̃k−1(x) = p̃k−1

(
· · · p̃1(x) · · ·

)
, µT̃k−1

(x) = min
1≤i≤k−1

µi(xi).
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Then for k practices,

T̃ (x) = p̃k
(
T̃k−1(x)

)
,

and by the definition of min–composition,
µT̃ (x) = min

{
µT̃k−1

(x), µk(xk)
}
= min

{
min

1≤i≤k−1
µi(xi), µk(xk)

}
= min

1≤i≤k
µi(xi).

This completes the induction.
Theorem 2.38 (Monotonicity of the Fuzzy Transformation). Suppose each fuzzy practice p̃i has amem-bership function µi that is non-decreasing in its argument: for all w,w′,

w ≤ w′ =⇒ µi(w) ≤ µi(w
′).

Then for any inputs x ≤ x′, the composite transformation T̃ satisfies
µT̃ (x) ≤ µT̃ (x

′).

Proof. Write x1 = x, x′
1 = x′, and recursively xi+1 = p̃i(xi), x′

i+1 = p̃i(x
′
i). Since each p̃i is non-decreasing,

xi ≤ x′
i =⇒ µi(xi) ≤ µi(x

′
i).

By the Min–Composition Property,
µT̃ (x) = min

1≤i≤k
µi(xi) ≤ min

1≤i≤k
µi(x

′
i) = µT̃ (x

′),

establishing monotonicity.
Theorem 2.39 (Bounds Preservation). Let α > 0 be a lower bound such that for every component ofthe Fuzzy ITIL 4 Framework,

µG̃(g), µC̃(q), µi(w), µT̃ (x), µĨ(t) ≥ α.

Then the final fuzzy service value ṽ(y) also satisfies
µṽ(y) ≥ α.

Proof. Bothmin and any convex combination (e.g. arithmetic mean) of values in [α, 1] remain in [α, 1].Since ṽ(y) is obtained by applying such aggregation operators to inputs each at least α, it follows that
µṽ(y) ≥ α.

Concretely, if
ṽ(y) = λ ·mini ri + (1− λ) · 1

m

∑
j

sj,

with each ri, sj ∈ [α, 1] and λ ∈ [0, 1], then
µṽ(y) ≥ λα + (1− λ)α = α.

Hence the lower bound is preserved.
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2.6 Neutrosophic ITIL 4 Framework

The Neutrosophic ITIL 4 Framework encodes all components—principles, constraints, practices,transformation, and improvement—as neutrosophic triples of truth, indeterminacy, and falsity. Thedefinitions and related concepts of Mathematical Framework for Neutrosophic ITIL 4 Framework areprovided below.
Definition 2.40 (Neutrosophic ITIL 4 Framework). The Neutrosophic ITIL 4 Framework generalizes theFuzzy ITIL 4 Framework by endowing every component with a neutrosophic structure. It is defined asthe quintuple

˜NITIL4 =
(
G̃N , C̃N , T̃N , P̃N , ĨN

)
,

with the following components:
1. Neutrosophic Guiding Principles: Let UG be the universe of candidate guiding principles. Thenthe neutrosophic set of guiding principles is defined by a triple membership function

ηG̃ : UG → [0, 1]3,

where for each g ∈ UG,
ηG̃(g) =

(
TG̃(g), IG̃(g), FG̃(g)

)
.

2. Neutrosophic Governance Constraints: Suppose a quality metric q ∈ R is used to assess aconstraint. Its neutrosophic satisfaction is given by
ηC̃(q) =

(
TC̃(q), IC̃(q), FC̃(q)

)
,

where—for example—we may specify

TC̃(q) =


0, q < 70,
q−70
10

, 70 ≤ q ≤ 80,

1, q > 80,

and assign suitable indeterminacy IC̃(q) (say, a small constant when q is near the threshold) andfalsity FC̃(q) such that
TC̃(q) + IC̃(q) + FC̃(q) = 1 or is otherwise appropriately bounded.

3. Neutrosophic Service Value Chain Transformation: Extend the crisp transformationT : X → Yto a neutrosophic mapping. For each x ∈ X , instead of a single output T (x), we associate theneutrosophic value
ηT̃ (x) =

(
TT̃ (x), IT̃ (x), FT̃ (x)

)
∈ [0, 1]3.

In many practical cases one may define
T̃ (x) = T (x) with confidence ηT̃ (x).

4. Neutrosophic Practices: Let
P̃N = {p̃1, p̃2, . . . , p̃k},

where each neutrosophic practice p̃i : Zi → Wi is paired with a triple membership function
ηp̃i : Wi → [0, 1]3.

Their sequential composition, following neutrosophic aggregation rules, produces the overalltransformation T̃N .
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5. Neutrosophic Continual Improvement: Extend the improvement function I : N0 → R to

ĨN : N0 → R,

along with an associated neutrosophic confidence triple (often taken as (1, 0, 0) for full cer-tainty).
Finally, the neutrosophic service value function is given by

ηṽ : Y → [0, 1]3,

assigning to each output y a triple (Tṽ(y), Iṽ(y), Fṽ(y)) that represents the degree of satisfactionfrom the perspectives of truth, indeterminacy, and falsity.
Example 2.41 (Concrete Instance of the Neutrosophic ITIL 4 Framework). Consider the following in-stance:

1. Neutrosophic Guiding Principles: Let the universe UG include:
UG = {“Focus on Value”, “Collaborate and Promote Visibility”, . . .}.

Define the neutrosophic membership as:

ηG̃(g) =


(1, 0, 0), if g = “Focus on Value”,
(0.8, 0.1, 0.1), if g = “Collaborate and Promote Visibility”,
(0.5, 0.2, 0.3), otherwise.

2. Neutrosophic Governance Constraint: For a quality metric q (with 0 ≤ q ≤ 100), define:

ηC̃(q) =


(0, 0.1, 0.9), q < 70,(

q−70
10

, 0.05, 1− q−70
10

− 0.05
)
, 70 ≤ q ≤ 80,

(1, 0, 0), q > 80.

For example, if q = 85 then
ηC̃(85) = (1, 0, 0),

indicating full satisfaction.
3. Neutrosophic Service Value Chain Transformation: Assume the crisp transformation is

T (x) = 2(x+ 20).

Its neutrosophic extension is defined by
ηT̃ (x) =

{
(0.7, 0.2, 0.1), x < 100,

(1, 0, 0), x ≥ 100.

For an input x = 150,
T (150) = 2(150 + 20) = 340 and ηT̃ (150) = (1, 0, 0).

4. Neutrosophic Practice: Let there be one neutrosophic practice p̃1 defined as
p̃1(x) = x+ 20.
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With an associated membership defined by a logistic-like model:

ηp̃1(x) =
( 1

1 + e−0.1(x−50)
, 0.05, 1− 1

1 + e−0.1(x−50)
− 0.05

)
.

For x = 150, we obtain
p̃1(150) = 170, ηp̃1(150) ≈ (0.98, 0.05, −0.03).

(Here, one may adjust the model so that the falsity is nonnegative; for instance, by calibrating theoffset.)
5. Neutrosophic Continual Improvement: Define the improvement function as

ĨN(t) = 5t, t ∈ N0,

with confidence given by (1, 0, 0).
Step-by-Step Computation:

1. For an input x = 150, the crisp transformation gives
T (150) = 340, ηT̃ (150) = (1, 0, 0).

2. Compute a quality metric q by, for instance,
q = min{100, 340/4} = min{100, 85} = 85.

Then,
ηC̃(85) = (1, 0, 0),

meaning the governance constraint is fully met.
3. The neutrosophic practice yields

p̃1(150) = 150 + 20 = 170, ηp̃1(150) ≈ (0.98, 0.05, 0.02),

after adjusting the values to ensure T + I + F ≤ 1 (or a proper bound).
4. After t = 3months,

ĨN(3) = 5× 3 = 15 with (1, 0, 0).
5. The final service output is calculated as

yfinal = T (150) + ĨN(3) = 340 + 15 = 355.

6. The neutrosophic service value function is defined as
ηṽ(y) =

( y

y + 50
, 0.05, 1− y

y + 50
− 0.05

)
.

Therefore, for y = 355,
ηṽ(355) ≈

(355
405

, 0.05, 1− 355

405
− 0.05

)
≈ (0.877, 0.05, 0.073).
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This example demonstrates how the Neutrosophic ITIL 4 Framework embeds uncertainty (via in-determinacy) and captures both truth and falsity degrees for each component. Moreover, by setting

I = 0 and F = 1−T , the model reverts to the Fuzzy ITIL 4 Framework, as established in the theorem.
Example 2.42 (Network Outage Incident Management via Neutrosophic ITIL 4 Framework). Consideran unplanned network outage incident in an enterprise IT environment. We apply the NeutrosophicITIL 4 Framework to assess how well the incident management process adheres to principles, meetsconstraints, executes practices, and improves over time.

1. Neutrosophic Guiding Principles Let
UG = {“Focus on Value”,

“Collaborate and Promote Visibility”, “Keep It Simple”}
. Assign:

ηG̃(g) =


(1.00, 0.00, 0.00), g = “Focus on Value”,
(0.90, 0.10, 0.00), g = “Collaborate and Promote Visibility”,
(0.80, 0.15, 0.05), g = “Keep It Simple”.

2. Neutrosophic Governance Constraint Let q = resolution time in hours. Define

TC̃(q) =


1.0, q ≤ 4,
6− q

2
, 4 < q ≤ 6,

0.0, q > 6,

IC̃(q) =


0.0, q ≤ 4,

0.20, 4 < q ≤ 6,

0.10, q > 6,

and
FC̃(q) = 1− TC̃(q) − IC̃(q).

For an incident resolved in q = 5 h:
ηC̃(5) =

(
0.50, 0.20, 0.30

)
.

3. Neutrosophic Service Value Chain Transformation The incident passes through three practices:detection, resolution, and communication. Their neutrosophic memberships are:
ηp̃1(detection) = (0.85, 0.10, 0.05),

ηp̃2(resolution) = (0.80, 0.15, 0.05),

ηp̃3(communication) = (0.90, 0.05, 0.05).

By the Neutrosophic Composition Rule,
ηT̃N

(x) =
(
min{0.85, 0.80, 0.90},

max{0.10, 0.15, 0.05}, max{0.05, 0.05, 0.05}
)
= (0.80, 0.15, 0.05).

4. Combine with Governance Constraint Intersecting with ηC̃(5) = (0.50, 0.20, 0.30):
T = min(0.80, 0.50) = 0.50, I = max(0.15, 0.20) = 0.20, F = max(0.05, 0.30) = 0.30.

Thus after value-chain and constraint:
η1 = (0.50, 0.20, 0.30).
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5. Neutrosophic Continual ImprovementMonthly post-incident reviewhas ηĨN (t) = (0.70, 0.20, 0.10).Intersecting:

Tfinal = min(0.50, 0.70) = 0.50, Ifinal = max(0.20, 0.20) = 0.20, Ffinal = max(0.30, 0.10) = 0.30.

So the final neutrosophic service value is
ηṽ = (0.50, 0.20, 0.30).

This triple concisely captures that the incident process achieved 50% truth in desired outcomes, with20% indeterminacy and 30% residual falsity, guiding management on where to focus further improve-ments.
Theorem 2.43 (Reduction to the Fuzzy ITIL 4 Framework). If, for every neutrosophic component ofthe Neutrosophic ITIL 4 Framework, the indeterminacy is set to zero and the falsity is defined as thecomplement of truth (i.e. F (u) = 1−T (u) for all relevant u), then the Neutrosophic ITIL 4 Framework

˜NITIL4 =
(
G̃N , C̃N , T̃N , P̃N , ĨN

)
reduces exactly to the Fuzzy ITIL 4 Framework.
Proof. For any neutrosophic membership function η : U → [0, 1]3, suppose that for each u ∈ U weset

I(u) = 0 and F (u) = 1− T (u).

Then the triple η(u) = (T (u), 0, 1− T (u)) encodes exactly the same information as the fuzzy mem-bership function µ(u) = T (u). Applying this conversion to each component:
• The neutrosophic guiding principles ηG̃(g) = (TG̃(g), 0, 1− TG̃(g)) reduce to the fuzzy set withmembership µG̃(g) = TG̃(g).
• Similarly, for the governance constraints, the neutrosophic satisfaction ηC̃(q) = (TC̃(q), 0, 1 −
TC̃(q)) becomes the fuzzy membership µC̃(q) = TC̃(q).

• The neutrosophic service value chain and practices, when their associated membership triplesare replaced by (T, 0, 1−T ), correspond exactly to the fuzzy transformation and fuzzy practices.
• The neutrosophic continual improvement ĨN similarly reduces to the fuzzy continual improve-ment I if its uncertainty is removed.

Hence, under these conditions, every component of ˜NITIL4 is equivalent to its fuzzy counterpart,and we obtain the Fuzzy ITIL 4 Framework. This completes the proof.
Theorem 2.44 (Neutrosophic Composition Rule). Let each neutrosophic practice p̃i be given by

ηp̃i(w) =
(
Ti(w), Ii(w), Fi(w)

)
,

and define the composite mapping
T̃N(x) = p̃k

(
p̃k−1(. . . p̃1(x) . . . )

)
.

Then its neutrosophic membership is
ηT̃N

(x) =
(
min
1≤i≤k

Ti(xi), max
1≤i≤k

Ii(xi), max
1≤i≤k

Fi(xi)
)
,

where x1 = x and xi+1 = p̃i(xi).
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Proof. We use induction on the number of practices k.

Base case (k = 1). Then T̃N = p̃1, so
ηT̃N

(x) = ηp̃1(x) =
(
T1(x), I1(x), F1(x)

)
= (min{T1(x)},max{I1(x)},max{F1(x)}).

Thus the formula holds for k = 1.
Inductive step. Assume the formula holds for k − 1:

η
T̃

(k−1)
N

(x) =
(

min
1≤i≤k−1

Ti(xi), max
1≤i≤k−1

Ii(xi), max
1≤i≤k−1

Fi(xi)
)
.

Now consider k practices. Write
y = T̃

(k−1)
N (x), η

T̃
(k−1)
N

(x) =
(
T ′, I ′, F ′).

Then
T̃N(x) = p̃k(y), ηp̃k(y) =

(
Tk(y), Ik(y), Fk(y)

)
.

By the definition of neutrosophic intersection,
ηT̃N

(x) = η
T̃

(k−1)
N

∧ ηp̃k = (min(T ′, Tk(y)), max(I ′, Ik(y)), max(F ′, Fk(y))).

Substitute T ′ = mini<k Ti(xi), I ′ = maxi<k Ii(xi), F ′ = maxi<k Fi(xi) to obtain(
min
i≤k

Ti(xi), max
i≤k

Ii(xi),

max
i≤k

Fi(xi)
)
,

completing the induction.
Theorem 2.45 (Monotonicity of Neutrosophic Aggregation). If for each practice i and all w ≤ w′,

Ti(w) ≤ Ti(w
′),

Ii(w) ≤ Ii(w
′),

Fi(w) ≥ Fi(w
′),

then for any inputs x ≤ x′ componentwise,
TT̃N

(x) ≤ TT̃N
(x′),

IT̃N
(x) ≤ IT̃N

(x′),

FT̃N
(x) ≥ FT̃N

(x′).

Proof. Let x1 = x, x′
1 = x′, and recursively

xi+1 = p̃i(xi)

,
x′
i+1 = p̃i(x

′
i)

. Since each p̃i is order-preserving,
xi ≤ x′

i =⇒
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Ti(xi) ≤ Ti(x

′
i), Ii(xi) ≤ Ii(x

′
i), Fi(xi) ≥ Fi(x

′
i).

Then taking the minimum over Ti,
min

i
Ti(xi) ≤ min

i
Ti(x

′
i),

and the maximum over Ii and Fi,
max

i
Ii(xi) ≤ max

i
Ii(x

′
i), max

i
Fi(xi) ≥ max

i
Fi(x

′
i).

But by the composition theorem,
TT̃N

(x) = min
i

Ti(xi),

IT̃N
(x) = max

i
Ii(xi),

FT̃N
(x) = max

i
Fi(xi),

and similarly for x′, yielding the desired inequalities.
Theorem 2.46 (Exact Reduction to Fuzzy ITIL 4). If for every neutrosophic component

η(u) = (T (u), I(u), F (u))

one sets
I(u) = 0, F (u) = 1− T (u),

then the entire Neutrosophic ITIL 4 Framework collapses to the Fuzzy ITIL 4 Framework.
Proof. Under I(u) = 0 andF (u) = 1−T (u), each triple (T, 0, 1−T ) is in one-to-one correspondencewith the single fuzzy membership µ(u) = T . Moreover, neutrosophic intersection

(T1, 0, 1− T1) ∧ (T2, 0, 1− T2) =
(
min(T1, T2), 0, 1−min(T1, T2)

)
agrees exactly with the fuzzymin–composition. Similarly, all aggregation steps (max for indeterminacyand falsity) reduce to trivial operations on zero and complement, reproducing the fuzzy definitions.Hence every neutrosophic set, relation, and operation becomes its fuzzy counterpart, establishing theequivalence of frameworks.
3. Conclusion and Future Works

In this paper, we introduced two new frameworks—Fuzzy Service Integration and Management(FSIM) and Neutrosophic Service Integration and Management (NSIM)—which embed these uncer-tainty models into Service Integration and Management (SIAM). We also explored how ITIL best prac-tices can be fused with fuzzy and neutrosophic logic to create more adaptive and resilient service-management processes.As future work, we plan to investigate extended models based on Plithogenic Sets[(42)–(44)],HeptaPartitioned Neutrosophic Sets[(45), (46)], HyperNeutrosophic Sets[(47)–(49)], and QuadriPar-titioned Neutrosophic Sets[(50), (51)]. Additionally, we aim to explore graph-based[(52)], bidirectedgraph-based[(53)–(56)], hypergraph-based[(57)–(59)], and superhypergraph-based[(60)–(63)] approachesto Service Integration and Management, depending on application requirements.
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