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Motivated by the idea of uncertain linguistic sets and spherical fuzzy sets, the 
concept of spherical uncertain linguistic sets (SULSs) and some basic 
operational rules, properties, the score, and accuracy for spherical uncertain 
linguistic numbers (SULNs) are proposed. Then, we utilize arithmetic and 
geometric operations to develop some spherical uncertain linguistic 
aggregation operators: spherical uncertain linguistic weighted average 
(SULWA) operator, spherical uncertain linguistic weighted geometric 
(SULWG) operator, spherical uncertain linguistic ordered weighted average 
(SULOWA) operator, spherical uncertain linguistic ordered weighted 
geometric (SULOWG) operator, spherical uncertain linguistic hybrid average 
(SULHA) operator, spherical uncertain linguistic hybrid geometric (SULHG) 
operator, generalized spherical uncertain linguistic weighted averaging 
(GSULWA) operator, and generalized spherical uncertain linguistic weighted 
geometric (GSULWG) operator. Moreover, some desired properties of these 
operators are investigated. Then, we use these operators to develop some 
approaches to solve spherical uncertain linguistic multi-attribute decision-
making problems. Finally, a practical example for smartphone selection is 
given to illustrate the developed approach, and comparison analysis and 
discussion are conducted with another existing method to demonstrate the 
effectiveness and feasibility of the developed approach. 

 

 
1. Introduction 

MADM problems are the important research parts of modern decision theory. Since the object 
things are fuzzy, the attribute values involved in the decision problems are not always expressed as 
crisp numbers, and some of them are more suitable to be denoted by fuzzy numbers, linguistic 
variable, and rough numbers etc. in many situations, a decision maker can’t provide the information 
with a crisp value, but with a linguistic term because of time pressure, lack of knowledge or data, and 
his/her limited expertise related with problem domain. As a result, many decision making processes 
take place in the setting with linguistic information [1-8]. However, in some practical situations, the 
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input linguistic arguments may not match any of the original linguistic labels, and they may be located 
between two of them. For instance, when evaluating the “design” of a car, an expert may provide 
his/her opinion with “between ‘fair’ and ‘good’ [9-10]. Xu [9] emphasized those linguistic methods 
failed in cope with the situations in which the information about preference values was expressed in 
the form of uncertain linguistic information. Therefore, the decision making problem with uncertain 
linguistic terms deserves more attention. There are two main types linguistic sets are called the 
additive uncertain linguistic set and the multiplicative uncertain linguistic set, respectively. In aspect 
of the additive uncertain linguistic set, many aggregation operators are proposed by scholars to 
aggregate the decision information based on the operational laws, such as the uncertain linguistic 
weighted averaging (ULWA) operator[11], the uncertain ordered weighted averaging (ULOWA) 
operator[11], the uncertain linguistic hybrid aggregation (ULHA) operator[12], some induced 
uncertain linguistic OWA (IULOWA) operators[12], the uncertain linguistic weighted harmonic mean 
(ULWHM) operator [13], the uncertain linguistic ordered weighted harmonic mean (ULOWHM) 
operator [13], the uncertain linguistic hybrid harmonic mean (ULHHM) operator [14], the uncertain 
linguistic Choquet averaging (ULCA) operator [14], the generalized Shapley uncertain linguistic 
Choquet averaging (GS-ULCA) operator [15] , the uncertain linguistic Bonferroni mean (ULBM) 
operator [15], the uncertain linguistic prioritized weighted averaging (ULPWA) operator [16] and the 
uncertain linguistic prioritized weighted harmonic averaging (ULPWHA) operator [17], etc. To 
aggregate the decision information in the form of multiplicative linguistic variables, many 
aggregation operators are proposed based on the multiplicative linguistic sets and their operational 
rules, such as the uncertain linguistic weighted geometric averaging (ULWG) operator [17], the 
uncertain linguistic ordered weighted geometric averaging (ULOWG) operator [18], the induced 
uncertain linguistic ordered weighted geometric averaging (IULOWG) operator [18], the uncertain 
linguistic hybrid geometric averaging (ULHG) operator [18], the uncertain multiplicative linguistic 
hybrid weighted geometric averaging (ULHWG) operator [19], the uncertain linguistic geometric 
Bonferroni mean (ULGBM) operator [15], the uncertain linguistic prioritized weighted geometric 

(ULPWG) operator [16]，the uncertain probabilistic linguistic geometric Bonferroni mean (UPLGBM) 
operator [20], and so on. In recent years, some evaluation scenarios extend application of uncertain 
linguistic set and make it adapt to a certain decision-making environment. For example, some 
researchers effectively integrated the uncertain linguistic set with intuitionistic fuzzy sets (IFSs) [21-
23], interval-valued intuitionistic fuzzy sets (IVIFSs) [24-28], Pythagorean fuzzy sets (PyFSs) [29-31], 
picture fuzzy sets (PFSs) [32], 2-dimension linguistic [33-37], 2-tuple linguistic [38-39], q-rung 
orthopair fuzzy sets (q-ROFSs) [40-41], hesitant fuzzy sets (HFSs) [42-43], neutrosophic sets (NSs) [44-
48], rough sets (RSs) [49], soft sets (SSs) [50], fuzzy soft sets (FSSs) [51], etc. These works extend the 
wider applications of uncertain linguistic set. 

Spherical fuzzy sets (SFSs) proposed by Ashraf S. et al., [52] and are extension of IFSs, PyFSs and 
PFSs. SFSs are more powerful than IFSs, PyFSs and PFSs in dealing with the uncertainty, imprecision, 
and vagueness. Compared with IFSs and PyFSs, SFSs are able to handle fuzzy concepts of Yes, Abstain, 
No and Refusal” in real life, such as voting, but IFSs and PyFSs can only handle fuzzy concepts such as 
“neither this nor that” and their ignore the “Abstain and Refusal ” in real situation, which is not 

sufficiently close to human nature. And compared with PFSs, the positive-membership degree ( )P x , 

neutral-membership degree ( )I x  and negative-membership degree ( )N x  in SFSs satisfy the 

condition ( ) ( )( ) ( )( ) ( )( )( )2 2 2
0 1x X P x I x N x   + +  . If the problem cannot be handled by using 

PFSs when ( ) ( ) ( ) 1P x I x N x+ +  , for example, the degree of memberships of an alternative are 0.2, 

0.6 and 0.6, respectively, but their square sum is less than 1 with SFSs. Overall, the decision space of 
SFSs is greater than the decision space of PFSs, PyFSs and IFSs. Thus, SFSs could model some decision-
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making situations which IFSs, PyFSs and PFSs cannot deal with. From this point of view, inspired by 
the results [26,31,32], this paper generalized the concept of the spherical uncertain linguistic set. The 
aim of this study is to develop a series of spherical uncertain linguistic aggregation operators, 
including the spherical uncertain linguistic weighted average (SULWA) operator, spherical uncertain 
linguistic weighted geometric (SULWG) operator, spherical uncertain linguistic ordered weighted 
average (SULOWA) operator, spherical uncertain linguistic ordered weighted geometric (SULOWG) 
operator, spherical uncertain linguistic hybrid average (SULHA) operator, spherical uncertain 
linguistic hybrid geometric (SULHG) operator, generalized spherical uncertain linguistic weighted 
averaging (GSULWA) operator and generalized spherical uncertain linguistic weighted geometric 
(GSULWG) operator. 

To do this, the remainder of this paper is structured as follows. In Section 2, some basic definitions 
about uncertain linguistic variable sets and spherical fuzzy sets are reviewed, and the concept of 
spherical uncertain linguistic sets (SULSs) and spherical uncertain linguistic numbers (SULNs) are 
defined, then score, accuracy, and operational rules are proposed. In Section 3 and Section 4, some 
operators are developed, such as SULWA operator, SULWG operator, SULOWA operator, SULOWG 
operator, SULHA operator, SULHG operator, GSULWA operator and GSULWG operator, and their 
basic properties are discussed. In Section 5, a MADM method is developed based SULHA, SULHG, 
GSULWA and GSULWG operators. In Section 6, an illustrative example about smart phone selection 
is provided, and comparison analysis and discussion are conducted to verify the effectiveness and 
feasibility of the developed approach. Some concludes and future research are given in the last 
section. 

 
2 Preliminaries 
2.1 Uncertain linguistic variable sets 

Definition 1. Let  1,2, ,,iS s i t= = be a linguistic term set with odd cardinality. Any label, 
is

represents a possible value for a linguistic variable, and it should satisfy the following characteristics 
[53-56]: 

The set is ordered: i js s , if i j ; 

Max operator: max( , )i j is s s= , if i js s ; 

Min operator: min( , )i j is s s= , if i js s . 

For example, S can be defined as S = {s1=extremely poor, s2=very poor, s3=poor, s4= medium, 
s5=good, s6=very good, s7=extremely good}. 

Let  ,s s s = , where ,s s S   , s  and s are the lower and upper limits, respectively. We call s  

the uncertain linguistic variable. Let S be the set of all the uncertain linguistic variable sets 
[11,17,57,58]. 

Let any three uncertain linguistic variables ,
i iis s s 

 =   , ,
j jjs s s 

 =
 

 and ,
k kks s s 

 =   , 

, ,i j ks s s S ,  0,1 , Xu [11] define their operational laws as follows: 

, , , ,
i i j j i j i j i j i ji js s s s s s s s s s s s           + +

       =  =   =       
                                                             (1) 

, , , ,
i i j j i j i j i j i ji js s s s s s s s s s s s            

       =  =   =       
                                                              (2) 

, , ,
k k k k k kks s s s s s s             = = =                                                                                                        (3) 

( ) ( ) ( ) ( )
( ) ( )

, , ,
k k k k

k k
ks s s s s s s 

 

     
    = = =       

                                                                                  (4) 
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2.2 Spherical fuzzy sets 
Spherical fuzzy sets (SFSs) [52] are extension of IFSs, PyFSs [59] and PFSs [60]. SFSs based models 

may be adequate in situations when we face human opinions involving more answers of types: Yes, 
Abstain, No and Refusal. It can be considered as a powerful tool represent the uncertain information 
in the process of patterns recognition and cluster analysis. 

Definition 2. [61] Let the universe set be R. Then the set 

( ) ( ) ( ) , , ,A A AA r P r I r N r r R=                                                                                                               (5) 

is said to be SFS, where PA:R→[0,1], IA:R→[0,1] and NA:R→[0,1] are said to be the degree of 
positive-membership degree of r in R, neutral-membership degree of r in R and negative-membership 
degree of r in R respectively. Also PA, IA, and NA satisfy the following condition: 

( ) ( )( ) ( )( ) ( )( )( )2 2 2
0 1A A Ar R P r I r N r   + +                                                                                        (6) 

For SFS ( ) ( ) ( ) , , ,A A Ar P r I r N r r R , which is triple components ( ) ( ) ( ), ,A A AP r I r N r  are said 

to SFN and each SFN can be denoted by , ,e e ee P I N= , where Pe, Ie and Ne∈[0,1], with condition 

that 2 2 2
0 1e e eP I N + +  . 

Definition 3. [61] Assuming that , ,
j j jj e e ee P I N=  and , ,

k k kk e e ee P I N=  are any two SFNs. The 

union, intersection, and compliment are described as 

j ke e  iff , , ,
j k j k j ke e e e e er R P P I I N N     ；                                                                                        (7) 

j ke e=  iff ,j k k je e e e  ；                                                                                                                             (8) 

( ) ( ) ( )max , ,min , ,min ,
j k j k j kj k e e e e e ee e P P I I N N= ;                                                                               (9) 

( ) ( ) ( )min , ,min , ,max ,
j k j k j kj k e e e e e ee e P P I I N N= ;                                                                             (10) 

, ,
j j j

c

j e e ee N I P=                                                                                                                                              (11) 

Definition 4. [61] Suppose that , ,
j j jj e e ee P I N=  and , ,

k k kk e e ee P I N=  are any two SFNs and 

0  . Then the operations of SFNs can be denotes as 

( ) ( ) ( )2
1 1 , ,

j j jj e e ee P I N
  

 = − − ;                                                                                                          (12) 

2 2 2 2
, ,

j k j k j k j kj k e e e e e e e ee e P P P P I I N N+ = + −    ;                                                                                       (13) 

2 2 2 2
, ,

j k j k j k j kj k e e e e e e e ee e P P I I N N N N =   + −  ;                                                                                     (14) 

( ) ( ) ( )2
, , 1 1

j j jj e e ee P I N
  


= − − .                                                                                                           (15) 

Based on Definition 4, we can derive the following properties easily. 

Theorem 1. Assuming that , ,
i i ii e e ee P I N= , , ,

j j jj e e ee P I N= and , ,
k k kk e e ee P I N= be any three 

SFNs and 0  . Then the following identities are satisfies. 

i j j ie e e e =  ;                                                                                                                                                (16) 

i j j ie e e e =  ;                                                                                                                                                (17) 

( ) ( )i j k i j ke e e e e e  =   ;                                                                                                                         (18) 

( ) ( )i j k i j ke e e e e e  =   ;                                                                                                                         (19) 
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( )i j i je e e e   =  ;                                                                                                                                    (20) 

( )i i j i i j ie e e    =  ;                                                                                                                                  (21) 

( )i j i je e e e
  

 =  ;                                                                                                                                         (22) 

j i ji

j j je e e
   +

 = ;                                                                                                                                               (23) 

 
2.3 Spherical uncertain linguistic sets 

In the following, we shall propose the concepts and basic operations of the Spherical uncertain 
linguistic sets on the basis of the spherical fuzzy sets and uncertain linguistic information processing 
model. 

Definition 5. A spherical uncertain linguistic sets A in X is given 

( ) ( ) ( ) ( )( ) , , , ,
x A x A x A x

A s P I N x X


=                                                                                                                 (24) 

Where 
( ) ( ) ( ) ( )( ),
x x x x

s s s s
   

 =
 

, ( )x
s


and ( )x
s


are the lower and upper limits, respectively. 

( )  0,1
A x

P  , 
( )  0,1

A x
I  and 

( )  0,1
A x

N  , with the condition ( )( ) ( )( ) ( )( )
2 2 2

0 1
A x A x A x

P I N + +  . The 

numbers ( )A x
P , ( )A x

I , ( )A x
N represent, respectively, the degree of positive membership, degree of 

neutral membership and degree of negative membership of the element x to uncertain linguistic 

variable ( )x
s


. Then for x X , 
( )( ) ( )( ) ( )( )

2 2 2

( ) 1A x A x A x A x
P I N

 
= − + + 

 
could be called the degree of 

refusal membership of the element x to uncertain linguistic variable ( )x
s


. 

For convenience, we call ( ) ( ), , ,a a aa
a s P I N


= a spherical uncertain linguistic number (SULN), 

where  0,1aP  ,  0,1aI  ,  0,1aN  , ( ) ( ) ( )
2 2 2

0 1a a aP I N + +  , 
( ) ( ) ( ) ( )( ),
a a a a

s s s s
   

 =
 

. 

Definition 6. Let ( ) ( ), , , , , , ,
i i ii i i i i i ia s P I N s s P I N  

 = =   be any SULNs. Then  

A expectation value of a spherical uncertain linguistic number can be represented as follows: 

( )
( ) ( )2

6

i i i i i

i

P I N
EX a

t

 +  + − −
=                                                                                                           (25) 

 The accuracy value of a spherical uncertain linguistic number can be represented as follows: 

( )
( ) ( )

2

i i i i

i

P N
AC a

t

 +  −
=                                                                                                                        (26) 

Idea takes from Definition 6, is the technique which using for equating the SULNs can be described 
as  

Theorem 2. Let ( ), , , ,
i ii i i ia s s P I N 

 =   and ( ), , , ,
j jj j j ja s s P I N 

 =
 

be any two SULNs. Then by 

using Definition 6, equating technique can be described as 

If ( ) ( )i jEX a EX a , then i ja a ; 

If ( ) ( )i jEX a EX a= , and ( ) ( )i jAC a AC a , then i ja a . 

Motivated by the operations of the uncertain linguistic information and Definition 6, in the 
following, we shall define some operational laws of spherical uncertain linguistic numbers. 

Definition 7. Let ( ), , , ,
i ii i i ia s s P I N 

 =   and ( ), , , ,
j jj j j ja s s P I N 

 =
 

be any two SULNs and

0  . Then 
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( )2 2 2 2
, , , ,

i j i ji j i j i j i j i ja a s s s s P P P P I I N N   
  = + + + −   
 

                                                        (27) 

( )2 2 2 2
, , , ,

i j i ji j i j i j i j i ja a s s s s P P I I N N N N   
  =     + + 
 

                                                           (28) 

( ) ( ) ( )2
, , 1 1 , ,

i ii i i ia s s P I N
  

   
 

 = − −  
 

                                                                                   (29) 

( ) ( ) ( ) ( ) ( ) ( )2
, , , , 1 1

i ii i i ia s s P I N
   

 

  = − −     
                                                                          (30) 

Based on Definition 7, we can derive the following properties easily. 

Theorem 3. For any two spherical uncertain linguistic numbers ( ), , , ,
i ii i i ia s s P I N 

 =   and 

( ), , , ,
j jj j j ja s s P I N 

 =
 

 and 0  , it can be proved the calculation rules shown as follows 

i j j ia a a a =  ;                                                                                                                                             (31) 

i j j ia a a a =  ;                                                                                                                                             (32) 

( )i j i ja a a a   =  ;                                                                                                                                 (33) 

( ) , , 0i i j i i j i i ja a a      =   ;                                                                                                             (34) 

( ) ( ) ( ) , , 0i j i j

i i i i ja a a
   

 
+

 =  ;                                                                                                             (35) 

( ) ( ) ( ) , 0
i ii

i j i j ia a a a
 

 =   ;                                                                                                              (36) 

( )( ) ( ) , , 0
j

i i j

i i i ja a


  
 =  .                                                                                                                       (37) 

 

3. Spherical uncertain linguistic arithmetic aggregation operators 
In this section, we shall develop some arithmetic aggregation operators with spherical uncertain 

linguistic information, such as spherical linguistic weighted averaging (SULWA) operator, spherical 
uncertain linguistic ordered weighted averaging (SULOWA) operator, spherical uncertain linguistic 
hybrid averaging (SULHA) operator, and generalized spherical uncertain linguistic weighted averaging 
(GSULWA) operator. 

Definition 8.  (SULWA) Let ( ), , , ,
i ii i i ia s s P I N 

 =   (i=1, 2, …, n)be any collection of SULNs and 

SULWA: SULNn→SULN, then SULWA can be described as  

( ) ( )1 2
1

, , ,
n

w n i i
i

SULWA a a a w a
=

=                                                                                                                   (38) 

Where ( )1 2, , ,
T

nw w w w= be the weight vector of 
ia (i=1, 2, …, n), and 

1
0, 1

n

i ii
w w

=
 = . 

Theorem 4. Let ( ), , , ,
i ii i i ia s s P I N 

 =   (i=1, 2, …, n) be any collection of SULNs. Then, by utilizing 

Definition 8 and the operational properties of SULNs form Theorem 3, we can obtain the following 
result. 

( ) ( )

( )( ) ( ) ( )

1

1 2
1

2

1 1 1

, , ,

, , 1 1 , ,
i

i i

n n

i i i i

i i

n

w n i i
i

n n nw
w w

i i i
w w i i i

SULWA a a a w a

s s P I N
 

=

=

= = =

= 

   
   = − −
   

  
 

  
                                                              (39) 

Where ( )1 2, , ,
T

nw w w w= be the weight vector of ia (i=1, 2,…, n), and 
1

0, 1
n

i ii
w w

=
 = . 
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Proof: We prove Eq. (39) by mathematical induction on n. 
When n = 2, we have 

( )1 2 1 1 2 2,wSULWA a a w a w a=   

From Definition 7 and Theorem 3, we can see that both 
1 1w a and 

2 2w a are SULNs, and the value of 

1 1 2 2w a w a is also a SULN. From the operational laws of spherical uncertain linguistic number, we 

have 

( )
1

1 1

1 1

2

1 1 1 1 1 1 1, , 1 1 , ,
w

w w
w a w s w s P I N 

 
 = − −  

 
 

( )
2

2 2

2 2

2

2 2 2 2 2 2 2, , 1 1 , ,
w

w w
w a w s w s P I N 

 
 = − −  

 
 

Then 

( )

( )( ) ( )( ) ( )( ) ( )( )

( ) ( )

1 2 1 2

1 2

1 2 1 2

1 2

1 2
1 2 1 2

1 1 2 2 1 1 2 2

1 2 1 1 2 2

2 2 2 2

1 2 1 2

1 2 1 2 1 2

1 2

2 2

1 2 1 2 1 2
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, , ,
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w
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w w

w w

w w
w w w w

w w w w

SULWA a a w a w a

P P P P

w s w s w s w s I I

N N

s s P P I I N N

   

   + +

= 

 
− − + − − − − − − − 

 
  = + +    

 
 
 

 
 = − − −    

 

 

Suppose that n = k, Eq.(7) holds, i.e., 

( )
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s s P I N
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=

= = =

=   

   
   = − −
   

  
 

  
 

And the aggregated value is a SULN, then when n=k+1, by the operational laws of SULN, we have 
( )

( )( ) ( )( ) ( )( ) ( )( )
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+
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=

+ + +
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+

=

=

=    
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− − + − − − − − − −   

   
 
 = + + 
  
 



 


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1

1 1

1

1

1 1 1
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k

i
i i

k k

i i i i

i i

w

k k kw
w w

i i i
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+
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=

+
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 
 
 
 
 
 
 
 
 
 

       = − −         

  

 

By which aggregated value is also a SULN, therefore, when n = k+1, Eq. (39) holds. 
Thus, by Eq. (31) and Eq. (32), we know that Eq.(39) holds for all n. the proof is completed. 
It can be easily proved that the SULWA operator has the following properties. 
Theorem 5. (Idempotency) If all ( 1,2, , )ia i n= are equal, i.e. 

ia a= for all i, then 

( ) ( )1 2, , , , , ,w n wSULWA a a a SULWA a a a a= =  

Theorem 6. (Boundedness) Let ( 1,2, , )ia i n= be a collection of SULNs, and let

min , maxi i
i i

a a a a
− +
= = , then 

( )1 2, , ,w na SULWA a a a a
− +
   
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Theorem 7. (Monotonicity) Let ( 1,2, , )ia i n= and ( 1,2, , )ia i n = be two set of SULNs, if 
i ia a , 

for all I, then 

( ) ( )1 2 1 2, , , , , ,w n w nSULWA a a a SULWA a a a    

Further, we give a spherical uncertain linguistic ordered weighted averaging (SULOWA) operator 
below: 

Definition 9. (SULOWA) Let ( ), , , ,
i ii i i ia s s P I N 

 =   (i=1, 2, …, n)be any collection of SULNs and 

SULOWA: SULNn → SULN, then SULOWA can be described as 

( ) ( )( )1 2
1

, , ,
n

w n i i
i

SULOWA a a a w a


=
=                                                                                                            (40) 

With dimensions n, where the i-th biggest weighted value is ( )ia


consequently by total order

( ) ( ) ( )1 2 n
a a a
  

   . ( )1 2, , ,
T

nw w w w= is the associated weight vector such that 0iw   and 

1
1

n

ii
w

=
= (i=1, 2, …, n). 

Theorem 8. Let Let ( ), , , ,
i ii i i ia s s P I N 

 =   (i=1, 2, …, n) be any collection of SULNs. Then by 

utilizing Definition 9 and the operational properties of SULNs from Theorem 3, we can get the 
following outcome. 

( ) ( )( )

( ) ( )

( )( ) ( )( ) ( )( )
1

1 2
1

2

1 1 1

, , ,

, , 1 1 , ,
i

i i

n n

i ii i

i i

n

w n i i
i

wn n nw w

i i i
w w i i i

SULOWA a a a w a

s s P I N
 



  
 

=

=

= = =

= 

   
    = − − 

    
  

 
  

                                            (41) 

Where ( )1 2, , ,
T

nw w w w= be the associated weight vector of SULNs such that 0iw   and 

1
1

n

ii
w

=
= (i=1, 2, …, n). 

It can be easily proved that SULOWA operator has the following properties. 
Theorem 9. (Idempotency) If all ( 1,2, , )ia i n= are equal, i.e. 

ia a= for all i, then 

( ) ( )1 2, , , , , ,w n wSULOWA a a a SULOWA a a a a= =  

Theorem 10. (Boundedness) Let ( 1,2, , )ia i n= be a collection of SULNs, and let

min , maxi i
i i

a a a a
− +
= = , then 

( )1 2, , ,w na SULOWA a a a a
− +
   

Theorem 11. (Monotonicity) Let ( 1,2, , )ia i n= and ( 1,2, , )ia i n = be two set SULNs, if
i ia a , for 

all i, then 

( ) ( )1 2 1 2, , , , , ,w n w nSULOWA a a a SULOWA a a a    

Theorem 12. (Commutativity) Let ( 1,2, , )ia i n= and ( ) ( 1,2, , )
i

a i n


=
 
be two set SULNs, for all i, 

then  

( ) ( ) ( ) ( )( )1 2 1 2
, , , , , ,w n w n

SULOWA a a a SULOWA a a a
  

=  

Where ( ) ( 1,2, , )
i

a i n


= is any permutation of ( 1,2, , )ia i n= . 

From Definition 8-9, we know that the SULWA operator only weights the spherical uncertain 
linguistic number itself, while that SULOWA operator weights the ordered positions of the spherical 
uncertain linguistic number instead of weighting the arguments itself. Therefore, the weights 
represent two different aspects in both the SULWA and SULOWA operators. However, both the 
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operators consider only one of them. To solve this drawback, in the following we shall propose the 
spherical uncertain linguistic hybrid average (SULHA) operator. 

Definition 10. (SULHA) Let ( ), , , ,
i ii i i ia s s P I N 

 =   (i=1, 2, …, n)be any collection of SULNs and 

SULHA: SULNn → SULN, then SULHA can be described as 

( ) ( )( )

( ) ( )

( )( ) ( )( ) ( )( )
1

, 1 2
1

2

1 1 1

, , ,

, , 1 1 , ,
i

i i

n n

i ii i

i i

n

w n i i
i

n n n

i i i

i i i

SULHA a a a a

s s P I N
 

 


 

  
   



=

=

= = =

= 

   
    = − − 

    
  

 
  

                                              (42) 

Where ( )1 2, , ,
T

n   = is the associated weighting vector, with  0,1i  , 
1

1
n

ii


=
= , and 

( )ia


is the i-th largest element of the spherical uncertain linguistic arguments ( )( ), 1,2, ,i i i ia a nw a i n= =

, ( )1 2, , ,
T

nw w w w= is the weighting vector of spherical uncertain linguistic arguments ( 1,2, , )ia i n=

, with  
1

0,1 , 1
n

i ii
w w

=
 = , and n is the balancing coefficient. Especially, if ( )1 1 1, , ,

T

n n n
 = , the 

SULHA is reduced to the spherical uncertain linguistic weighted average (SULWA), if 

( )1 1 1, , ,
T

w
n n n

= , then SULHA is reduced to the spherical uncertain linguistic ordered weighted 

average (SULOWA) operator. 

Definition 11. (GSULWA) Let ( ), , , ,
i ii i i ia s s P I N 

 =   (i=1, 2, …, n) be any collection of SULNs and 

GSULWA: SULNn → SULN, then GSULWA can be described as 

( )

( ) ( )

( )( ) ( ) ( )( )1 1

1 1

1

1 2
1

11
2

2 2

1 1 1

, , ,

, , 1 1 , , 1 1 1 1
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i i i i

i i

n

n i i
i

wn n nw
w

i i i

i i iw w

GSULWA a a a w a

s s P I N
 

 




 


 

= =

=

   
= = =   

   
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 
=  
 

   
      

= − − − − − −               
  

 
  

      (43) 

Where ( )1 2, , ,
T

nw w w w= be the weight vector of SULNs, with  
1

0,1 , 1
n

i ii
w w

=
 = , and 0  . 

Especially, if 1 = , the GSULWA is reduced to the spherical uncertain linguistic weighted average 
(SULWA). 

 
4. Spherical uncertain linguistic geometric aggregation operators 

This section describes some geometric aggregation operators with spherical uncertain linguistic 
information, such as spherical uncertain linguistic weighted geometric (SULWG) operator, spherical 
uncertain linguistic ordered weighted geometric (SULOWG) operator, spherical uncertain linguistic 
hybrid geometric (SULHG) operator and generalized spherical uncertain linguistic weighted 
geometric (GSULWG) operator.  

Definition 12. (SULWG) Let ( ), , , ,
i ii i i ia s s P I N 

 =   (i=1, 2, …, n) be any collection of SULNs and 

SULWG: SULNn → SULN, then SULWG can be described as 

( ) ( )1 2

1

, , , i

n
w

w n i

i

SULWG a a a a
=

=                                                                                                                (44) 

Where ( )1 2, , ,
T

nw w w w= be the weight vector of SULNs, with  
1

0,1 , 1
n

i ii
w w

=
 =  

Based on Definition 12 and Theorem 3, we can obtain the following result. 
Theorem 13. The aggregated value by using SULWG operator is also a SULN, where 
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( ) ( )

( ) ( )
( ) ( ) ( )( )
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1

2

1 1 1

, , ,

, , , , 1 1

i

i
i i

n n
w wi i

i i

i i

n
w

w n i
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n n n w
w w

i i i

i i i

SULWG a a a a

s s P I N
 

= =

=

= = =

=

   
   = − −
   

   
 



  

                                                         (45) 

Where ( )1 2, , ,
T

nw w w w= be the weight vector of SULNs, with  
1

0,1 , 1
n

i ii
w w

=
 =  

Proof: We prove Eq. (45) by mathematical induction on n. 
When n = 2, we have 

( ) ( ) ( )1 2

1 2 1 2,
w w

wSULWG a a a a=   

By Definition 7 and Theorem 3, we can see that both ( ) 1

1

w
a and ( ) 2

2

w
a are SULNs, and the value of 

( ) ( )1 2

1 2

w w
a a is also a SULN. From the operational laws of spherical uncertain linguistic number, we 

have 
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  = − − −       

 

Suppose that n = k, Eq. (45) holds, i.e., 
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And the aggregated value is a SULN, then when n=k+1, by the operational laws of SULN, we have 
( )

( )
( )

( )
( )

( ) ( )

( ) ( )

( )( ) ( )( ) ( )( )

1

1

1 1
1 1

1 1

1

1 2 1 1 1 2 2 1 1

1

1

1

1

2 22

1

1 1

, , ,

,

, , ,

1 1 1 1 1 1 1 1

i k

i k

k w k wk k
w wi ik k

i i

i i

i ik

w k k k k k

k
w w

i k

i

k
w w

i k

i

k kw ww

i k i k

i i

ULWG a a a w a w a w a w a

P P

s s s s I I

N N N N

 
 

+

+

+ +
+ +

= =

+

+ + +

+

=

+

=

+

= =

=    



 
 =   
  
 

   
− − + − − − − − − −   

   





  ( )( )

( ) ( )
( ) ( ) ( )( )

1

1 1

1 1

2

1

1 1 1
2

1 1 1

, , , , 1 1

k

i
i i

k k
w wi i

i i

i i

w

k k k w
w w

i i i

i i i

s s P I N
 

+

+ +

= =

+

+ + +

= = =

 
 
 
 
 
 
 
 
 
 

       = − −         

  

 



Journal of Intelligent Decision Making and Granular Computing 

Volume 1, Issue 1 (2025) 106-126 

116 
 
 

By which aggregated value is also a SULN, therefore, when n=k+1, Eq. (45) holds. 
Thus, by (31) and (32), we know that Eq. (45) holds for all n. the proof is completed. 
It can be easily proved that the SULWG operator has the following properties. 
Theorem 14. (Idempotency) If all ( 1,2, , )ia i n= are equal, i.e. 

ia a= for all i, then 

( ) ( )1 2, , , , , ,w n wSULWG a a a SULWG a a a a= =  

Theorem 15 (Boundedness) Let ( 1,2, , )ia i n= be a collection of SULNs, and let

min , maxi i
i i

a a a a
− +
= = , then 

( )1 2, , ,w na SULWG a a a a
− +
   

Theorem 16. (Monotonicity) Let ( 1,2, , )ia i n= and ( 1,2, , )ia i n = be two set of SULNs, if i ia a , 
for all i, then 

( ) ( )1 2 1 2, , , , , ,w n w nSULWG a a a SULWG a a a    

Further, we give a spherical uncertain linguistic ordered weighted geometric (SULOWG) operator 
below: 

Definition 13. (SULOWG) Let ( ), , , ,
i ii i i ia s s P I N 

 =   (i=1, 2, …, n) be any collection of SULNs and 

SULOWG: SULNn → SULN, then SULOWG can be described as 

( ) ( )1 2 ( )

1

, , ,
i

n
w

w n i

i

SULOWG a a a a
=

=                                                                                                          (46) 

With dimensions n, where the i-th biggest weighted value is ( )ia


consequently by total order

( ) ( ) ( )1 2 n
a a a
  

   . ( )1 2, , ,
T

nw w w w= is the associated weight vector of SULN, with 0iw   and 

1
1

n

ii
w

=
= (i=1, 2, …, n). 

Theorem 17. Let ( ), , , ,
i ii i i ia s s P I N 

 =   (i=1, 2, …, n) be any collection of SULNs. Then, by utilizing 

Definition 13 and the operational properties of SULNs from Theorem 3, we can obtain the following 
outcome. 
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    = = =
   
   

=

 
     = − −     

   
 
 


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                                       (47) 

Where ( )1 2, , ,
T

nw w w w= be the associated weight vector of SULNs such that 0iw   and 

1
1

n

ii
w

=
= (i=1, 2, …, n). 

It can be easily proved that the SULOWG operator has the following properties. 
Theorem 18. (Idempotency) If all ( 1,2, , )ia i n= are equal, i.e.

ia a= for all i, then 

( ) ( )1 2, , , , , ,w n wSULOWG a a a SULOWG a a a a= =  

Theorem 19. (Boundedness) Let ( 1,2, , )ia i n= be a collection of SULNs, and let

min , maxi i
i i

a a a a
− +
= = , then 

( )1 2, , ,w na SULOWG a a a a
− +
   

Theorem 20. (Monotonicity) Let ( 1,2, , )ia i n= and ( 1,2, , )ia i n = be two set of SULNs, if 
i ia a , 

for all i, then 

( ) ( )1 2 1 2, , , , , ,w n w nSULOWG a a a SULOWG a a a    
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Theorem 21. (Commutativity) Let ( 1,2, , )ia i n= and ( ) ( 1,2, , )
i

a i n


= be two set SULNs, for all i, 

then  

( ) ( ) ( ) ( )( )1 2 1 2
, , , , , ,w n w n

SULOWG a a a SULOWG a a a
  

=  

Where ( ) ( 1,2, , )
i

a i n


= is any permutation of ( 1,2, , )ia i n= . 

From Definitions 12-13, we know that the SULWG operator only weights that spherical uncertain 
linguistic number itself, which the SULOWG operator weights the ordered positions of the spherical 
uncertain linguistic number instead of weighting the arguments itself. Therefore, the weights 
represent two different aspects in both the SULWG and SULOWG operators. However, both the 
operators consider only one of them. To solve this drawback, in the following we shall propose the 
spherical uncertain linguistic hybrid geometric (SULHG) operator. 

Definition 14. (SULHG) Let ( ), , , ,
i ii i i ia s s P I N 

 =   (i=1, 2, …, n) be any collection of SULNs and 

SULHG: SULNn → SULN, then SULHG can be described as 

( ) ( )

( )( ) ( )( )
( )( ) ( )( ) ( )( )

1 1

, 1 2 ( )

1

2

1 1 1

, , ,

, , , , 1 1

i

i
i i

n n
i i

i i

i i

n

w n i

i

n n n

i i i

i i i

SULHG a a a a

s s P I N
 

 



 


 

  
 

= =

=

= = =

=

   
    − −     

   
 



  

                                             (48) 

Where  ( )1 2, , ,
T

n   = is the associated weighting vector, with  0,1i  , 
1

1
n

ii


=
= , and 

( )ia


is the i-th largest element of the spherical uncertain linguistic arguments ( )( ), 1,2, ,inw

i i ia a a i n= = , 

( )1 2, , ,
T

nw w w w= is the weighting vector of spherical uncertain linguistic arguments ( 1,2, , )ia i n= , 

with  
1

0,1 , 1
n

i ii
w w

=
 = , and n is the balancing coefficient. Especially, if ( )1 1 1, , ,

T

n n n
 = , the 

SULHG is reduced to the spherical uncertain linguistic weighted geometric (SULWG), if 

( )1 1 1, , ,
T

w
n n n

= , then SULHG is reduced to the spherical uncertain linguistic ordered weighted 

geometric (SULOWG) operator. 

Definition 15. (GSULWG) Let ( ), , , ,
i ii i i ia s s P I N 

 =   (i=1, 2, …, n) be any collection of SULNs and 

GSULWG: SULNn → SULN, then GSULWG can be described as 

( ) ( )

( ) ( )
( )( ) ( ) ( )( )

1 1

1 2

1

1 1
2

2 2

1 1
1 1 1

1
, , ,

, , 1 1 1 1 , , 1 1

i

i
i

i

n n
w wi i

i i

i i

n
w

w n i

i

wn n n w
w

i i i

i i i

GSULWG a a a a

s s P I N

 


 
 




= =

=

= = =

=

         = − − − − − −                 
 



  

             (49) 

Where ( )1 2, , ,
T

nw w w w= be the weight vector of SULNs, with  
1

0,1 , 1
n

i ii
w w

=
 = , and 0  . 

Especially, if 1 = , the GSULWG is reduced to the spherical uncertain linguistic weighted geometric 
(SULWG). 

 
5. MADM method utilizing spherical uncertain linguistic aggregation operators 

Consider a multi attribute decision making problem with spherical uncertain linguistic 

information. Let  1 2, , , mA A A A= be a discrete set of alternatives and  1 2, , , nC C C C= be the set 

of attributes. ( )1 2, , ,
T

nw w w w= is the weighting vector of the attribute ( )1,2, ,jC j n= , where 
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0, 1,2, ,jw j n = ,
1

1
n

jj
w

=
= . Suppose that ( ) ( ), , , ,

ij ijij ij ij ij
m n m n

D d s s P I N 
 

 = =
 

is the spherical 

uncertain linguistic decision matrix, where 
ijd takes the form of the spherical uncertain linguistic 

variable. 
In the following, we apply the SULHA or SULHG or GSULWA or GSULWG operator to solve this 

MADM problem. The method involves the following steps: 

Step 1. We utilize the decision information given in matrix D  and the SULHA operator, GSULWA 

operator, SULHG operator and GSULWG operator to derive the overall preference values 
ip (i=1,2,…

,m) of the alternative
iA . 

By Eq. (42) and Eq. (48), we can utilize the SULHA operator and SULHG operator 

( ) ( )( )

( ) ( )

( )( ) ( )( ) ( )( )
1 1

, 1 2
1

2

1 1 1

, , ,

, , 1 1 , ,
j

j j

n n

j ji j i j

j j

n

i w i i in j i j
j

n n n

i j i j i j

j j j

p SULHA d d d d

s s P I N
 

 


 

  
   



= =

=

= = =

= = 

   
    = − −     

   
 

  
                                    (50) 

( ) ( )( )

( )( ) ( )( )
( )( ) ( )( ) ( )( )

1 1

, 1 2
1

2

1 1 1

, , ,

, , , , 1 1

j

j
j j

n n
j j

i j i j

j j

n

i w i i in i j
j

n n n

i j i j i j

j j j

p SULHG d d d d

s s P I N
 

 



 


 

  
 

= =

=

= = =

= = 

   
    = − −     

   
 

  
                                (51) 

Where ( )1 2, , ,
T

n   = is the associated weighting vector, with  0,1j  , 
1

1
n

jj


=
= , and 

( )i j
d


is the j-th largest element of the spherical uncertain linguistic arguments 

( )( ), 1,2, ,
jnw

j j jd d d j n= = , ( )1 2, , ,
T

nw w w w= is the weighting vector of spherical uncertain 

linguistic arguments ( 1,2, , )jd j n= , with  
1

0,1 , 1
n

j jj
w w

=
 = , and n is the balancing coefficient. 

By Eq. (43) and Eq. (49), we can utilize the GSULWA operator and GSULWG operator 

( )

( ) ( )

( )( ) ( ) ( )( )1 1

1 1

1

1 2
1

11
2

2 2

1 1 1

, , ,

, , 1 1 , , 1 1 1 1

j
j

j

n n

j ij j ij

j j

n

i i i in j ij
j

wn n nw
w

ij ij ij

j j jw w

p GSULWA d d d w d

s s P I N
 

 




 

 

= =

=

   
= = =   

   
   

 
= =  

 

   
      
 = − − − − − −               

    
 

  

      

(52) 

( ) ( )

( ) ( )
( )( ) ( ) ( )( )

1 1

1 2

1

1 1
2

2 2

1 1
1 1 1

1
, , ,

, , 1 1 1 1 , , 1 1

j

j
j

j

n n
w wj ij

ij ij

j j

n
w

i w i i in ij

j

wn n n w
w

ij ij ij

j j j

p GSULWG d d d d

s s P I N

  

 
 




= =

=

= = =

= =

           = − − − − − −               
 



  

      

(53) 

Where ( )1 2, , ,
T

nw w w w= be the weight vector of SULNs, with  
1

0,1 , 1
n

j jj
w w

=
 = , and 0  . 

Step 2. By Eq. (25), we can calculate the expected value ( )iEX p (i=1, 2,…, m) of the overall 

spherical uncertain linguistic numbers
ip (i=1, 2,…, m). rank all of the alternatives ( )1,2, ,iA i m=  and 

then select the best one(s). if there is no difference between two expected values ( )iEX p and 

( )kEX p , then by Eq. (26), we must calculate the accuracy value ( )iAC p and ( )kAC p of the collective 
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overall preference values 
ip and 

kp , respectively, and then rank the alternatives in accordance with 

the accuracy values. 
Step 3. Rank all the alternatives 

iA (i=1, 2,…, m) and select the best one(s) in accordance with

( )iEX p and ( )iAC p  (i=1, 2,…,m). 

Step 4. End. 
 

6. Illustrative example 
A shopping website wants to evaluate four Android smart phones (A1, A2, A3, A4 as alternatives) 

with different price performance and price performance at the same price to be launched, so as to 
explore the potential purchase intention of consumers. The website employs some experts to aid this 
decision-making, and evaluates these alternatives according to the following four attributes (suppose 
that the weight vector of the four attributes is w =(0.25, 0.23, 0.25, 0.27)T): (1) C1 is fluency of system; 
(2) C2 is UI design; (3) C3 is functional diversity and (4) C4 is hardware configuration. The four smart 
phones Ai (i=1, 2, 3, 4) are to be evaluated using the spherical uncertain linguistic numbers by the 
decision makers under the above four attributes, and construct the following spherical uncertain 

linguistic decision matrix 
4 4

ijD d


 =
  is shown in Table 1. 

Table 1  
the spherical uncertain linguistic decision matrix 

 C1 C2 C3 C4 

A1 <[s2,s3],(0.7,0.4,0.2)> <[s3,s4],(0.6,0.4,0.3)> <[s1,s2],(0.6,0.5,0.4) > <[s6,s7],(0.5,0.2,0.3)> 
A2 <[s1,s2],(0.7,0.5,0.3)> <[s4,s5],(0.5,0.7,0.2)> <[s2,s3],(0.7,0.3,0.3)> <[s2,s3],(0.6,0.2,0.4)> 
A3 <[s2,s4],(0.4,0.7,0.4)> <[s2,s3],(0.7,0.3,0.2)> <[s3,s4],(0.8,0.3,0.3)> <[s4,s6],(0.6,0.3,0.3)> 
A4 <[s4,s5],(0.8,0.3,0.4)> <[s1,s2],(0.7,0.6,0.3)> <[s3,s5],(0.6,0.4,0.3)> <[s1,s3],(0.5,0.3,0.4)> 

 
6.1 The evaluation steps 

In the following, we apply the SULHA operator, SULHG operator, GSULWA operator and GSULWG 
operator to solve this MADM problem. The method involves the following steps: 

Step 1. According to Table 1, firstly, aggregate all spherical uncertain linguistic numbers 

( )1,2,3,4ijd j = by using the SULHA/SULHG operator to derive the overall spherical uncertain linguistic 

numbers ( )1,2,3,4ip i =  of the smart phones Ai (i=1, 2, 3, 4), in which the associated weighting vector 

 can be determined by using a regular increasing monotone quantifier Q [62], and get 

( )0.2,0.1,0.3,0.4
T

 = . Secondly, utilize the GSULWA/GSULWG operator ( 1 = ) to aggregate all 

spherical uncertain linguistic numbers ( )1,2,3,4ijd j = , and get the overall spherical uncertain 

linguistic numbers ( )1,2,3,4ip i =  of the smart phones Ai (i=1, 2, 3, 4). The aggregating results are 

shown in Table 2. 
 

Table 2  
Aggregated results by the four operators 

 SULHA SULHG 

A1 <[s3.31,s4.50],(0.593,0.310,0.293)> <[s2.76,s4.04],(0.565,0.310,0.323)> 
A2 <[s1.69,s2.96],(0.653,0.293,0.318)> <[s1.89,s2.98],(0.30,0.293,0.344)> 
A3 <[s3.07,s4.78],(0.670,0.345,0.297)> <[s3.10,s4.80],(0.604,0.345,0.319)> 
A4 <[s2.17,s3.89],(0.639,0.339,0.350)> <[s1.84,s3.83],(0.589,0.339,0.370)> 
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Table 2  
Continued 

 GSULWA( ) GSULWG( ) 

A1 <[s3.06,s4.06],(0.607,0.351,0.291)> <[s2.48,s3.64],(0.594,0.351,0.310)> 
A2 <[s2.21,s3.21],(0.638,0.371,0.295)> <[s1.97,s3.05],(0.621,0.371,0.314)> 
A3 <[s2.79,s4.31],(0.661,0.371,0.294)> <[s2.67,s4.18],(0.604,0.371,0.311)> 
A4 <[s2.25,s3.77],(0.672,0.378,0.348)> <[s1.86,s3.53],(0.636,0.378,0.357)> 

 
Step 2. According to the aggregating results shown in Table 2, we can calculate the expected value 

( )iEX p (i=1, 2, 3, 4) of the collective spherical uncertain linguistic value ( )1,2,3,4ip i = , and the 
expected values of the smart phones are shown in Table 3. 

 
Table 3 
Expected values of smart phones 

Alt. SULHA SULHG GSULWA( 1 = ) GSULWG( 1 = ) 

A1 2.591 2.188 2.332 1.973 
A2 1.585 1.615 1.781 1.621 
A3 2.651 2.553 2.363 2.192 
A4 1.970 1.775 1.951 1.708 

 
Step 3. According to the expected values shown in Table 3 and the ranking of the smart phones 

are shown in Table 4. Note that “ ” means “preferred to”. As we can see, depending on the 
aggregation operators used, the ordering of the smart phones is the same, and the best smart phone 
is A3. 

Table 4  
Ordering of the smart phones 
Operators Ordering 

SULHA 3 1 4 2A A A A  

SULHG 3 1 4 2A A A A  

GSULWA( 1 = ) 3 1 4 2A A A A  

GSULWG( 1 = ) 3 1 4 2A A A A  

 
6.2 Comparative analysis and discussion 

In this comparison, we used the SFNWAA operator proposed by S. Ashraf et al., [63] to solve the 
example used in this paper. As the attribute information in [63] occurs in the form of SFNs, we then 
used the decision matrix from Table 1 without uncertain linguistic variables, as follows Table 5. 

 
Table 5  
The spherical fuzzy decision matrix 

Alt. C1 C2 C3 C4 

A1 <0.7,0.4,0.2> < 0.6,0.4,0.3> <0.6,0.5,0.4> <0.5,0.2,0.3> 
A2 <0.7,0.5,0.3> <0.5,0.7,0.2> <0.7,0.3,0.3> <0.6,0.2,0.4> 
A3 < 0.4,0.7,0.4> <0.7,0.3,0.2> <0.8,0.3,0.3> <0.6,0.3,0.3> 
A4 <0.8,0.3,0.4> <0.7,0.6,0.3> <0.6,0.4,0.3> <0.5,0.3,0.4> 

 
From Table 6, we observe that although the expected values of the alternatives obtained by the 

proposed operators in this paper are different, the final ranking is exactly the same, all of which are

3 1 4 2A A A A . Meanwhile, the ranking results obtained by SFNWAA operator in [63] are not the 

same as those got by the proposed operators, the main reason is that the uncertain factors in decision 

1 = 1 =
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information are not considered. But the best alternative is A3, which shows the effectiveness of 
decision making by using the methods proposed in this paper. 

 
Table 6 
Ranking of different methods 
Operators Expected values of Ai Ordering 

SULHA EX(A1)=2.591; EX(A2)=1.585; EX(A3)=2.651; EX(A4)=1.970 
3 1 4 2A A A A  

SULHG EX(A1)=2.188; EX(A2)=1.615; EX(A3)=2.553; EX(A4)=1.775 
3 1 4 2A A A A  

GSULWA( 1 = ) EX(A1)=2.332; EX(A2)=1.781; EX(A3)=2.363; EX(A4)=1.951 
3 1 4 2A A A A  

GSULWG( 1 = ) EX(A1)=1.973; EX(A2)=1.621; EX(A3)=2.669; EX(A4)=1.708 
3 1 4 2A A A A  

SFNWAA [63] EX(A1)=0.655; EX(A2)=0.657; EX(A3)=0.665; EX(A4)=0.648 
3 2 1 4A A A A  

 
When parameter λ is removed from different values, different results can be obtained. Table 7 

and Table 8 show the expected values of alternatives corresponding to different parameter λ. 
 

Table 7  
Expected values of alternatives with different λ by GSULWA operator 

λ EX(A1)  EX(A2)  EX(A3) EX(A4) Ranking 

0.5 2.162 1.711 2.308 1.844 3 1 4 2A A A A  

1 2.332 1.781 2.363 1.951 3 1 4 2A A A A  

2 2.663 1.924 2.473 2.147 1 3 4 2A A A A  

3 2.948 2.061 2.580 2.302 1 3 4 2A A A A  

5 3.358 2.291 2.768 2.510 1 3 4 2A A A A  

7 3.613 2.456 2.915 2.640 1 3 4 2A A A A  

 
Table 8  
Expected values of alternatives with different λ by GSULWG operator 

λ EX(A1)  EX(A2)  EX(A3) EX(A4) Ranking 

0.5 1.981 1.627 2.206 1.714 3 1 4 2A A A A  

2 1.957 1.606 2.163 1.695 3 1 4 2A A A A  

3 1.942 1.593 2.135 1.682 3 1 4 2A A A A  

5 1.917 1.571 2.088 1.659 3 1 4 2A A A A  

7 1.899 1.553 2.052 1.642 3 1 4 2A A A A  

 
It can be observed from Table 7 that with the increase of parameter λ, the expected value of each 

alternative also increases, while the expected value of each alternative in Table 8 decreases. In 
practical decision-making, decision makers can choose different parameter λ according to their 
preference degree.  

Figures 1 to 4 show how the expectation values and exact values of the proposed generalized 
aggregation operators change with the increase of the parameter λ. The parameter λ ranges from 0 
to 30. For the GSULWA operator, the expectation value curves of A1 and A3 intersect at point (1.0693

，2.3775) in Figure 1. According to Theorem 2, it can be seen from Figure 2 that A3 is preferred over 
A1. The ranking of each alternative in this process is relatively stable with respect to the parameter 
λ. For the GSULWG operator, within the parameter λ range of 0 to 30, the expectation values and 
exact values of the operator first decrease and then suddenly increase. The priority order of each 
alternative in this process is quite stable with respect to the parameter λ. 
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Fig. 1. GSULWA operator’s expectation value with parameter λ 

 
Fig. 2. GSULWA operator’s accuracy value with parameter λ 
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Fig. 3. GSULWG operator’s expected value with parameter λ 

 
Fig. 4. GSULWG operator’s accuracy value with parameter λ 

 

7. Conclusion 
Spherical fuzzy sets (SFSs) are a new extension of Cuong’s picture fuzzy sets (PFSs), spherical 

uncertain linguistic sets [SULSs] are also a extension of picture uncertain linguistic sets (PULSs) 
proposed by Wu [64]. In this paper, we explore the multiple attribute decision making problems with 
spherical uncertain linguistic information. Then, some spherical uncertain linguistic aggregation 
operators such as spherical uncertain linguistic weighted average (SULWA) operator, spherical 
uncertain linguistic ordered weighted average (SULOWA) operator, spherical uncertain linguistic 
hybrid average (SULHA) operator, generalized spherical uncertain linguistic weighted average 
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(GSULWA) operator, spherical uncertain linguistic weighted geometric (SULWG) operator, spherical 
uncertain linguistic ordered weighted geometric (SULOWG) operator, spherical uncertain linguistic 
hybrid geometric (SULHG) operator, generalized spherical uncertain linguistic weighted geometric 
(GSULWG) operator are put forward by utilizing arithmetic and geometric operation. The prominent 
characteristic of these proposed operators are studied. Then, we have used SULHA, SULHG, GSULWA 
and GSULWG operators to solve the multiple attribute decision making problems under spherical 
uncertain linguistic environment. Finally, a practical example for smart phones evaluation of shipping 
website is given to verify the presented approach and to demonstrate its practicality and 
effectiveness. In the future, we will continue working on the extension and application of the 
developed operators to other domains. 
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