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This study focuses on the application of artificial intelligence (AI) 
technologies in digital tokamak systems. Through systematic literature 
review and analysis, it expounds the application status, system 
construction, technical roadmap, and integration pathways of AI 
technologies in this field. The research shows that AI technologies have 
demonstrated significant advantages in plasma control, disruption 
prediction, and state recognition, effectively enhancing the performance 
and efficiency of digital tokamak systems. Meanwhile, this study constructs 
an architectural framework for AI-empowered digital tokamaks, and  sorts 
out the technical roadmap covering multidisciplinary fields such as plasma 
physics, materials science, and control engineering, and proposes a full-
process integration pathway from data fusion and model construction to 
application deployment. Although certain achievements have been made, 
challenges remain in model interpretability, data quality and scale, real-
time requirements, and multi-scenario adaptability. In the future, 
deepening the application of AI in digital tokamak systems and advancing 
controlled nuclear fusion research to new heights will require 
interdisciplinary collaboration, algorithmic innovation, and data 
governance. 
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1. Introduction 

Tokamak devices, as key equipment for achieving magnetically confined nuclear fusion, involve 
extremely complex physical processes, including the confinement, heating, transport of high-
temperature plasmas, and interactions with device materials. Realizing controlled nuclear fusion 
means that humanity can master an almost inexhaustible and clean energy source, which is of far-
reaching significance for alleviating global energy crises and addressing climate change. However, the 
operation of tokamak devices faces many challenges, such as plasma instability, disruption risks, and 
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precise control problems, and traditional research and control methods have gradually revealed 
limitations in handling these complex issues [1-3]. 

With the rapid development of information technology, AI technologies, with their powerful data 
processing, pattern recognition, and autonomous learning capabilities, provide a new perspective 
and methods for solving complex problems in tokamak devices. In the past few decades, AI 
technologies have made breakthroughs in various fields, from image recognition and natural 
language processing to robot control, with their application scope continuously expanding. In the 
field of tokamak research, AI technologies have gradually emerged and begun to penetrate into 
multiple key links such as plasma control, diagnosis, and prediction. For example, analyzing plasma 
operation data through machine learning algorithms can achieve precise identification and prediction 
of plasma states, providing strong support for the stable operation of devices; using reinforcement 
learning methods to optimize the magnetic field control strategy of tokamaks can effectively improve 
plasma confinement performance. 

However, current research on the application of AI in digital tokamak systems still has certain 
gaps. On the one hand, most existing studies focus on the application of AI in specific links of 
tokamaks, lacking research on the systematic integration and optimization of AI technologies from 
the perspective of the overall system architecture. This leads to problems such as poor data 
circulation and model incompatibility between various application links, making it difficult to give full 
play to the collaborative advantages of AI technologies. On the other hand, although some studies 
have attempted to construct models combining AI and tokamak physical processes, these models are 
often too simplified to fully consider the complex physical mechanisms inside tokamaks, resulting in 
the need to improve the prediction accuracy and reliability of the models. In addition, in practical 
applications, AI models face challenges such as low data quality, difficult-to-meet real-time 
requirements, and insufficient adaptability to complex and changeable tokamak operation scenarios, 
which seriously restrict the widespread application and promotion of AI technologies in digital 
tokamak systems. 

Based on the above research status and gaps, this study aims to deeply explore the application 
prospects and challenges of AI technologies in digital tokamak systems. By constructing a 
comprehensive and systematic architectural framework for AI-empowered digital tokamaks, 
combing the relevant technical roadmap, and exploring practical integration pathways, it provides 
theoretical support and technical guidance for further improving the performance and efficiency of 
digital tokamak systems. Specifically, the objectives of this study include: first, clarifying the key 
application scenarios and requirements of AI in digital tokamak systems and constructing a complete 
architectural framework covering data collection, processing, model training, and application; 
second, systematically combing the multidisciplinary technical roadmap involved in the integration 
of AI technologies and digital tokamak systems to provide a clear roadmap for technological research 
and innovation; third, deeply studying the integration pathway of AI and digital tokamak systems, 
proposing a full-process solution from data fusion and model construction to application 
deployment, and verifying its effectiveness through case studies; fourth, comprehensively analyzing 
the challenges faced by AI in the application of digital tokamak systems, proposing targeted 
countermeasures and future research directions, and promoting the sustainable development of AI 
technologies in this field. 
 
2. Methodology  
2.1 System Construction of AI-empowered Digital Tokamak 
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Constructing an AI-empowered digital tokamak system requires consideration from multiple 
levels. First, at the data level, digital tokamaks generate massive multi-source heterogeneous data 
during operation, including physical parameters such as plasma temperature, density, and magnetic 
field strength, as well as operation status data of device components. The efficient collection, 
storage, and preprocessing of these data are the basis for subsequent analysis and modeling. 
Therefore, a distributed data collection system needs to be established to ensure the accuracy and 
real-time of data, and big data storage technologies such as Hadoop Distributed File System (HDFS) 
should be adopted to store data reliably. In the preprocessing stage, data preprocessing are used to 
remove noise and outliers, and data standardization and normalization processing are carried out to 
make different types of data comparable [4,5]. 

At the model level, various AI models are constructed according to different application 
requirements. In plasma control, reinforcement learning models can learn optimal control strategies 
through continuous interaction with the tokamak environment to achieve precise control of plasma 
position, shape, and temperature. Taking the research of the DeepMind team in tokamak magnetic 
control as an example, the RL agent interacts with the FGE tokamak simulator to learn to control 
tokamak configuration variables, effectively improving plasma control accuracy [6]. For plasma 
disruption prediction, recurrent neural networks (RNNs) and their variant long short-term memory 
networks (LSTMs) in deep learning are more suitable, as they can capture long-term dependencies in 
time-series data and accurately predict the possibility of disruptions in advance [7,8]. In plasma state 
recognition tasks, convolutional neural networks (CNNs) can perform feature extraction and 
classification on complex plasma image data to achieve rapid recognition of different confinement 
states (such as L-mode and H-mode) [9,10]. 

At the application level, trained models are integrated into the digital tokamak control system to 
achieve real-time monitoring and control. A visualization interface is established to intuitively present 
the real-time state of the plasma, model prediction results, and the execution status of control 
commands to operators, facilitating timely adjustment of control strategies. Meanwhile, a remote 
monitoring and diagnosis platform is built, using cloud computing and edge computing technologies 
to achieve remote management and fault diagnosis of tokamak devices and improve operation and 
maintenance efficiency [11]. 
 
2.2 Technical Roadmap 

According to research fields, the technical roadmap for the integration of AI and digital tokamaks 
covers multiple key areas. In the field of plasma physics, it involves basic theories such as plasma 
dynamics and magnetohydrodynamics, as well as applied research such as plasma confinement, 
heating, and transport. The application of AI technologies in this field mainly reveals the internal laws 
of plasma behavior through the analysis of a large number of plasma experimental data, optimizes 
plasma operation parameters, and improves confinement performance. For example, machine 
learning algorithms are used to study the triggering mechanisms and evolution processes of plasma 
instabilities, providing a basis for developing effective control strategies [12,13]. 

In the field of materials science, the key for tokamak devices is to develop high-performance 
materials that can withstand high-temperature, high-pressure, and strong radiation environments. 
AI technologies can quickly screen and design new materials through materials genomics methods. 
By establishing a relationship model between material composition, structure, and properties, and 
using data mining and machine learning algorithms, potential high-quality materials are searched 
from massive material data to accelerate the material research and development process. For 
example, the Oak Ridge National Laboratory in the United States constructed an AI model to screen 
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new alloy materials for nuclear fusion facilities, providing important support for extending the service 
life of the first wall of fusion reactors [14,15]. 

In the field of control engineering, the focus is on achieving precise control of tokamak devices. 
Traditional control methods such as Proportional-Integral-Derivative (PID) control have certain 
limitations in handling complex and changeable plasma systems. After the introduction of AI 
technologies, adaptive control and intelligent control can be realized. For example, control strategies 
based on reinforcement learning can automatically adjust control parameters according to the real-
time state of the plasma, improving the flexibility and accuracy of control [16,17]. 

The field of computer science provides technical support for the application of AI in digital 
tokamaks, including big data processing technologies for storing, managing, and analyzing the 
massive data generated by tokamak operations; cloud computing and edge computing technologies 
for realizing distributed training and real-time inference of models to meet the system's 
requirements for computing resources and real-time inference of models; and high-performance 
computing technologies for accelerating the simulation of complex physical models and assisting in 
the training and verification of AI models [18,19]. 
 
2.3 Exploration of Integration Pathways 

Data fusion is the first step to achieve effective integration of AI and digital tokamaks. Integrate 
tokamak experimental data, physical model data, and external related field data to construct a 
unified data platform. Data fusion algorithms, such as Bayesian network-based fusion methods, are 
used to associate and integrate data from different sources and formats, improve data integrity and 
accuracy, and provide high-quality data support for subsequent model training. For example, fusing 
plasma diagnostic data with device operation status data can more comprehensively reflect the 
operation status of tokamaks, helping to improve the model's understanding and prediction 
capabilities for complex working conditions [20,21]. 

In the model construction stage, suitable AI algorithms are selected for different application 
scenarios, and customized development is carried out in combination with tokamak physical 
principles. Taking the plasma disruption prediction model as an example, first, a large amount of 
historical data containing disruption events is collected, preprocessed, and subjected to feature 
engineering to extract key features related to disruptions, such as plasma current and temperature 
gradient. Then, an LSTM network is selected to construct the prediction model. By adjusting the 
network structure and training parameters, supervised learning is performed using labeled data so 
that the model can accurately learn the feature patterns before disruptions and achieve accurate 
prediction of disruption events [22,23]. 

In the application deployment process, trained models are integrated into the actual control 
system of digital tokamaks. A model deployment framework such as TensorFlow Serving is adopted 
to ensure that the model can operate stably in the production environment and provide efficient 
inference services. At the same time, a model monitoring and updating mechanism is established to 
real-time monitor the performance indicators of the model, such as prediction accuracy and false 
alarm rate. When the model performance declines or the tokamak operation conditions change 
significantly, new data is timely collected, and the model is retrained and updated to ensure the 
adaptability and reliability of the model [24,25].      
       
3. Results  
3.1 Application Achievements of AI in Plasma Control 
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In the field of plasma control, AI technologies have achieved remarkable results. Taking 
reinforcement learning as an example, many research teams have successfully achieved precise 
control of multiple plasma parameters by developing agents to interact and train with tokamak 
simulators. For example, in a project collaborated by the DeepMind team and the Swiss Plasma 
Center (SPC), deep reinforcement learning algorithms were used to control the plasma in a nuclear 
fusion reactor. Through experimental simulation, the accuracy of plasma shape was increased by 
65%, and the training time required for new task learning was significantly shortened by more than 
3 times compared with before [6]. This achievement provides a new and effective path for complex 
magnetic field regulation, enabling more precise control of plasma shape in actual tokamak devices, 
improving plasma confinement performance, and thus enhancing the efficiency of nuclear fusion 
reactions. 

Next Step Fusion collaborated with the University of California, San Diego, to conduct experiments 
on the DIII-D National Fusion Facility tokamak. They used a machine learning model that directly takes 
the original magnetic diagnostic data detected by sensors as input to optimize the magnetic field 
performance. By conducting millions of simulation experiments in the digital twin replica, learning 
the optimal control strategy, and applying it in the real device, the experimental results showed that 
this method performed excellently in setting plasma control, effectively optimizing plasma 
performance. After comparison and verification with real experimental data and local simulators, the 
model maintained high precision and accuracy at each step, significantly improving the reliability and 
efficiency of plasma control [26]. 

 
3.2 Model Performance in Disruption Prediction and State Recognition 

In the field of plasma disruption prediction, AI models developed by multiple research teams have 
shown excellent performance. The research team of the Institute of Plasma Physics, Chinese 
Academy of Sciences, adopted a "pre-interpretability" machine learning method for the EAST device 
and developed an "interpretable prediction model" using a decision tree model, which achieved an 
area under the receiver operating characteristic curve (AUC) of 0.997 on the test set, successfully 
revealing the key physical quantities leading to locked mode disruptions. On this basis, the further 
developed "real-time prediction model" achieved a 94% successful early warning rate and an average 
early warning time of 137 milliseconds, fully meeting the strict requirements of ITER for disruption 
early warning [27]. This achievement provides a reliable disruption early warning guarantee for the 
safe operation of EAST devices and future large fusion devices such as ITER. By predicting disruptions 
in advance, measures can be taken in a timely manner to avoid serious damage to the device and 
reduce operation risks. 

In plasma state recognition, important progress has also been made. The team from the Institute 
of Plasma Physics, Chinese Academy of Sciences, innovatively adopted a multi-task learning neural 
network (MTL-NN) to integrate two closely related physical tasks: operation mode recognition 
(judging L-mode or H-mode) and edge local mode (ELM) detection, for collaborative learning in one 
model. The model uses scalar parameters in physical scaling laws as input features, effectively 
reducing signal noise interference. The experimental results show that its recognition accuracy is as 
high as 96.7%, which is 3.6% higher than that of the single-task model under the same database [28]. 
This efficient and precise real-time "diagnostic instrument" provides strong support for the 
monitoring and control of tokamak plasma operation states, helping to achieve high-performance 
steady-state operation, because accurate plasma state recognition is the basis for formulating 
reasonable control strategies, and control parameters can be adjusted in a timely manner according 
to different states to maintain the stable operation of the plasma. 
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3.3 System Application Effects in Practical Cases 

In practical cases, the AI-empowered digital tokamak system has shown good application effects. 
For example, the Southwestern Institute of Physics, China National Nuclear Corporation, deployed 
an AI disruption prediction module in the "China Circulator No. 3" and successfully achieved a plasma 
"soft landing" with a 1.6MA discharge, with a false alarm rate of less than 5.3% [29]. This application 
shows that by integrating the AI disruption prediction model into the tokamak control system, the 
risk of plasma disruption can be accurately predicted during actual operation, and corresponding 
measures can be taken to achieve a smooth transition, avoiding damage to the device caused by 
plasma disruption, ensuring the safe and stable operation of the device, and verifying the feasibility 
and effectiveness of AI technologies in actual tokamak devices. 

The "Xuanlong-50U" device of ENN Group uses AI technologies to achieve control of plasma 
configuration and developed a digital twin system of the device based on neural operator methods. 
The digital twin system has made significant progress in multi-physics field coupling simulation, with 
a speed increase of 4 orders of magnitude compared with traditional commercial software [30]. By 
establishing a digital twin system, real-time simulation and prediction of the operation of tokamak 
devices can be achieved, providing a basis for optimizing control strategies. In actual operation, the 
AI-based plasma configuration control technology can quickly adjust control parameters according 
to real-time monitoring data, achieve precise control of plasma configuration, improve the operation 
efficiency and performance of the device, and further reflect the application value of AI technologies 
in digital tokamak systems. 
 
4. Conclusions 
4.1 Summary of Research Achievements 

This study deeply explores the application of AI technologies in digital tokamak systems and has 
made a series of important achievements through constructing a comprehensive system 
architecture, combing the technical roadmap, and exploring integration pathways. In terms of system 
construction, a complete architecture covering three levels of data, model, and application has been 
established. At the data level, efficient collection, storage, and preprocessing of multi-source 
heterogeneous data have been realized; at the model level, various AI models have been developed 
for different application scenarios, such as reinforcement learning models for plasma control, 
RNN/LSTM models for disruption prediction, and CNN models for state recognition; at the application 
level, models have been integrated into the control system to achieve real-time monitoring and 
control, and visualization and remote monitoring platforms have been built. 

The technical roadmap combing results show that the integration of AI and digital tokamaks 
involves multiple fields such as plasma physics, materials science, control engineering, and computer 
science. In the field of plasma physics, AI helps reveal the laws of plasma behavior; in the field of 
materials science, it accelerates the research and development of new materials; in the field of 
control engineering, it realizes more precise and flexible control; and in the field of computer science, 
it provides strong technical support. 

The exploration of integration pathways proposes a full-process solution from data fusion, model 
construction to application deployment. Data fusion improves data quality by integrating multi-
source data; model construction customizes AI algorithms in combination with physical principles; 
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application deployment ensures that models can operate stably in actual systems and be updated in 
real-time. 

In terms of practical application achievements, AI has significantly improved control accuracy and 
efficiency in plasma control, such as the research results of the DeepMind team and Next Step Fusion 
Company; in disruption prediction and state recognition, related models have shown high accuracy 
and early warning rate, such as the research of the Institute of Plasma Physics, Chinese Academy of 
Sciences; in practical cases, the "China Circulator No. 3" and "Xuanlong-50U" devices have 
successfully applied AI technologies, improving the operation performance and safety of the devices. 

 
4.2 Analysis of Application Challenges 

Despite the above achievements, the application of AI in digital tokamak systems still faces many 
challenges. Model interpretability is a key issue. Many complex AI models, such as deep neural 
networks, have decision-making processes like "black boxes", making it difficult to understand their 
internal logic. In a system like tokamaks that requires extremely high safety and reliability, 
unexplainable model decisions may lead to operators' lack of trust in model prediction results, 
affecting their practical application. For example, in a plasma disruption prediction model, although 
it can accurately predict disruption events, it cannot clearly explain which key factors the model relies 
on to make judgments, which brings difficulties for operators to further optimize control strategies. 

Data quality and scale also have an important impact on AI applications. Tokamak operation data 
often have problems such as noise, missing values, and data imbalance, which will reduce the 
accuracy and stability of model training. At the same time, due to the high cost of tokamak 
experiments, it is difficult to obtain large-scale high-quality data, and limited data volume may lead 
to model overfitting, making it impossible to generalize to different operation conditions. Taking 
plasma state recognition as an example, if the data volume of a certain state in the training data is 
too small, the model may not be able to accurately recognize that state. 

Real-time requirements are another challenge. During the operation of tokamak devices, the 
plasma state changes rapidly, requiring AI models to respond in a very short time. However, some 
complex AI algorithms, such as deep reinforcement learning algorithms, have high computational 
complexity and long model inference time, making it difficult to meet the real-time control 
requirements of tokamaks. In the plasma control scenario, if the model cannot output control 
commands in a timely manner, it may lead to plasma instability and affect device operation. 

In addition, the operation scenarios of tokamaks are complex and changeable. Different 
experimental conditions, device parameters, and operation stages put forward high requirements 
for the adaptability of AI models. Existing models often perform well under specific conditions, but 
when the operation scenario changes significantly, the model performance may decline significantly. 
For example, after the device is upgraded and transformed, the range of some plasma parameters 
changes, and the original control model may not be able to effectively adapt to the new parameter 
range and needs to be retrained and optimized. 

 
4.3 Outlook on Future Research Directions 

Aiming at the above challenges, future research can be carried out from the following directions. 
In terms of model interpretability, develop explainable artificial intelligence (XAI) technologies, such 
as methods based on model visualization, feature importance analysis, and rule extraction, to deeply 
analyze the model decision-making process, enable operators to understand the basis of model 
prediction, and enhance trust in the model. For example, by developing visualization tools for 
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tokamak applications, the feature mapping relationships in deep learning models are intuitively 
presented to help researchers gain insight into how the model understands plasma data [31,32]. 

To solve the problems of data quality and scale, on the one hand, strengthen data governance, 
adopt advanced data cleaning, denoising, and completion algorithms to improve data quality; on the 
other hand, explore data enhancement technologies such as generative adversarial networks (GANs) 
to generate more effective training data on the basis of limited real data, expand the data scale, and 
improve model generalization ability. Taking plasma disruption prediction data as an example, use 
GAN to generate more data samples containing different disruption scenarios to assist model 
training. 

In terms of real-time improvement, on the one hand, optimize the hardware architecture, adopt 
high-performance computing chips, and combine cloud computing and edge computing to accelerate 
model inference; on the other hand, develop lightweight and efficient AI algorithms to reduce 
computational complexity and meet the real-time control requirements of tokamaks. For example, 
design a dedicated neural network architecture for tokamak plasma control to reduce computation 
and improve response speed while ensuring control accuracy. 

For the problem of model adaptability, carry out research on meta-learning and transfer learning 
to enable the model to quickly adapt to different tokamak operation scenarios. Meta-learning allows 
the model to learn how to learn and quickly master knowledge in new scenarios; transfer learning 
transfers the knowledge of the model trained in one scenario to other similar scenarios, reducing the 
retraining cost. For example, the plasma state recognition model trained on one tokamak device can 
be quickly adapted to the similar operation scenarios of another device through transfer learning 
methods. 

In addition, interdisciplinary cooperation is crucial. Strengthen the communication and 
collaboration among experts in plasma physics, artificial intelligence, materials science, control 
engineering, and other disciplines to jointly tackle the challenges in the application of AI in digital 
tokamak systems. Establish interdisciplinary research teams, consider the physical processes of 
tokamaks, AI algorithm design, and engineering implementation from different disciplinary 
perspectives, and promote the collaborative innovation and development of related technologies. 

AI technologies show broad application prospects in digital tokamak systems. Although facing 
many challenges, through continuous technological innovation, interdisciplinary cooperation, and in-
depth research on key issues, it is expected to provide strong support for the optimization control 
and performance improvement of tokamak devices and the realization of the ultimate goal of 
controlled nuclear fusion, promoting humanity to take an important step in the field of clean energy. 
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