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The use of Digital Twin (DT) technology in advanced industrial systems 
enables us to have better real-time monitoring, control, and optimization of 
complex processes. This paper presents new multi-period mixed-integer 
programming (MIP) models that can solve the problems of real-time 
scheduling and resource allocation in Digital Twin-based environments. The 
new models include dynamic system behavior across a number of different 
time periods with resource capacity constraints, task precedence, and 
working deadlines. Taking advantage of the real-time data streams from 
Digital Twins, the models learn and adapt to system variations and 
uncertainty to facilitate optimal decision-making for resource utilization and 
production efficiency. Computational experimentation on conventional case 
studies demonstrates the practicability and scalability of the approach and 
its potential to increase responsiveness and operational efficiency in cyber-
physical systems and smart manufacturing. 
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1. Introduction 

Over the last few years, the advent of Digital Twin (DT) technology has changed the game of 
industrial automation and intelligent manufacturing. A Digital Twin refers to a virtual copy of a 
physical system that provides real-time monitoring, simulation, and optimization of processes 
continuously through sensor, machine, and control system data integration. This feature makes it 
possible for organizations to maintain greater visibility, predictive maintenance, and rapid decision-
making in sophisticated and dynamic production environments. 

Real-time scheduling and resource allocation are key components to ensure operational 
effectiveness and responsiveness in such systems. Traditional models of scheduling are not 
designed to capture the temporal and stochastic nature of modern production systems, especially 
when adjustments need to be addressed at high rates and uncertainties run constantly. Multi-
period mixed-integer programming (MIP) models provide a solid mathematical framework to model 
these dynamic settings by considering multiple horizons and complex resource constraints. 
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This research focuses on the formulation and analysis of multi-period MIP models with 
particular relevance to real-time scheduling and resource allocation in Digital Twin-based systems. 
Based on the rich, real-time data streams offered by Digital Twins, the developed models adjust 
scheduling decisions and resource allocations dynamically to enhance key performance measures 
such as throughput, utilization, and lead times. The merge of DT technology with advanced 
optimization models is a promising solution to bridge the gap between physical and cyber-physical 
systems and enhance more resilient, versatile, and intelligent manufacturing systems. 

The remainder of the paper is organized as follows: Section 2 recapitulates previous studies on 
scheduling, resource allocation, and Digital Twin implementation. Section 3 outlines the 
formulation of the multi-period MIP model, assumptions, and constraints. Section 4 discusses 
computational experiments and results discussion. Section 5 summarizes the research and outlines 
avenues for future research. 

 
2. Literature Survey 

The integration of Digital Twin (DT) technologies with real-time resource planning and allocation 
is an emerging area of research for cyber-physical manufacturing systems. Multi-period Mixed-
Integer Programming (MIP) models are increasingly used to support intelligent decision-making in 
dynamic and intricate environments. The survey consolidates recent findings and patterns in this 
direction by evaluating research in manufacturing, logistics, maintenance, and distributed systems. 
Digital twins offer virtual imitation of physical systems with real-time visibility and adaptive control. 
In their work, Li et al., [1] developed a DT-based rescheduling model of intermodal terminals using 
hybrid methods, which was shown to minimize delays as well as enhance the operational efficiency 
by significant margins. Similarly, Hosseini-Motlagh et al., [2] incorporated a digital twin with a 
mixed proactive-reactive model for the optimisation of human milk supply chains, making the 
application of DT in humanitarian logistics viable. 

The use of DTs in mobile networks was investigated by Nardini and Stea [3], who made 
simulation services for 5G/B5G infrastructures possible with dynamic resource provisioning—a 
methodology translatable to production systems to make adaptive task scheduling possible. 
Wallrath et al., [4] suggested a time-decked MIP formulation for chemical batch plants in particular, 
resolving scheduling and lot-sizing under realistic constraints. Time-decomposed models are 
stepping stones for multi-period scheduling, especially if synchronized with DTs to capture the flow 
of time. Moreover, Yang et al., [5] applied risk-averse stochastic programming for dynamic lot sizing 
on reconfigurable assembly lines, demonstrating how decisions across periods could be treated 
under uncertainty. Meanwhile, Ye et al., [6] created a bi-level supply chain model under the cloud 
manufacturing, emphasizing the equilibrium between centralized planning and decentralized 
deployment, a key feature of DT-enabled architectures. 

The integration of AI with scheduling has transformed DT resource management. Ghosh and 
Abawajy [7] used AI and reliability analysis to minimize concreting operations, while Pitakaso et al., 
[8,9] designed transformer-based models for energy-efficient tugboat scheduling and floating crane 
operations. The research exemplifies the growing trend of adopting AI into scheduling operations to 
handle variability and maximize task allocation. MajidiParast et al., [10] used graph convolutional 
networks for predictive railway maintenance, applying the DT principle of predictive modeling of 
system behavior. Likewise, Wang et al. [11] integrated UAVs and IoV to deploy servers, optimizing 
resource offloading with mobility and connectivity constraints. Gartner et al., [12] discussed work 
and product rotation in industrial house prefabrication with multi-mixed-model assembly lines 
benefiting from DT-based sequencing. Meanwhile, Dönmez [13] developed an optimization 
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algorithm-based decision support system for airport ground operations with real-time scheduling in 
essential infrastructure. 

In supply chains of semiconductors, Kumar et al., [14] emphasized reliability and disruption 
resilience—a key feature in dynamic resource scheduling in MIP models. Simulation-based 
scheduling was used by the study of Castiglione et al., [15] to advance flexibility exploration in 
Industry 4.0, supporting synergy between digital twin simulation and MIP solutions. Sheikh et al., 
[16] created a safe and intelligent CPS architecture, where real-time scheduling was one of the 
factors influencing infrastructure resilience. In alignment with such an environment, Lian et al., [17] 
created mobile robot scheduling under industrial CPS, employing a hierarchical mechanism for 
spatial-temporal coordination—an approach well suited for multi-period MIP solutions. Gong et al., 
[18] proposed multi-objective optimization for mobile assembly line job shop scheduling under 
dynamic electricity pricing, bridging operational scheduling and sustainability goals. Buckhorst et 
al., [19] developed a decentralized control strategy for mobile assembly lines, again highlighting the 
role of DTs in flexible line-less manufacturing. The evolution into sustainable and resilient systems is 
evident in some of the publications. Wang et al., [20] provided a general overview of green 
maritime logistics, while Sudan et al., [21] elaborated on supply chain resilience strategy through 
the application of lifecycle and disruption-mitigation perspectives. The findings assist in enhancing 
multi-period models through incorporating sustainability and uncertainty mitigation factors. 
Guarnaschelli et al., [22] gave a stochastic model for dairy supply chains with production and 
distribution planning. Yeni et al., [23] gave a lean and stochastic programming approach for 
aquaculture supply chains, with emphasis on the utility of integrated planning models. 

Uncertainty scheduling was also discussed by Ma et al., [24] for aviation maintenance routing, 
acknowledging gaps in current models and the potential of new tech like DTs. Geurtsen et al., [25] 
examined multi-line maintenance scheduling, offering valuable inputs towards resource planning 
between distributed production facilities. Hamou et al., [26] conducted a survey on ML-based 
production scheduling, encouraging data-driven models capable of learning to adapt to changes in 
real-time—valuable in DT settings. Darchini-Tabrizi et al., [27] took the concept further by designing 
UAV-enabled MEC systems with intelligent task offloading, proving the potential of DT-driven edge 
systems for dynamic scheduling. 
This literature evidences the convergence of digital twin technologies, AI, and MIP-based models in 
real-time scheduling and resource allocation. Promising directions are: 

i. Combination of multi-agent DT platforms with decentralized optimization models. 
ii. Incorporation of sustainability and resilience metrics in MIP formulations. 

iii. Development of hybrid MIP-AI frameworks for predictive and adaptive scheduling. 
iv. Extension of applications to smart logistics, intermodal terminals, and aerospace 

systems. 
Despite such advancements, there has been considerable scarcity of multi-period MIP models 

that maximize the full, real-time information provided by Digital Twins to schedule and distribute 
resources. Most such works in the past rely on approximations for scheduling horizons or use 
heuristic methods that are not guaranteed to be optimal. This research aims to fill this void by 
developing robust multi-period MIP models that can receive real-time inputs from Digital Twins to 
optimize scheduling and resource allocation with multiple time horizons simultaneously. 
 
3. Methodology  

This subsubsection explains the MIP model formulation and solution approach for multi-period 
MIP models to optimize Digital Twin-aided real-time scheduling and resource allocation. The 
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approach includes real-time feedback data from the Digital Twin system in dynamically modifying 
scheduling decisions over multiple time periods. 

Let's establish the major sets, parameters, and variables that must be used to model and solve 
the multi-period scheduling and resource allocation problem. 
Let 𝐼 = {1,2, . . . , 𝑛} denote the set of jobs/tasks, 𝑅 = {1,2, . . . , 𝑚} the set of resource types and 𝑇 =
{1,2, . . . , 𝐻} the set of discrete time intervals within the planning horizon. For each task 𝑖 ∈ 𝐼, its 
processing time is given as 𝑝𝑖 ∈ ℤ+and its due date is defined as 𝑑𝑖 ∈ 𝑇. At each time period 𝑡 ∈ 𝑇, 
the available capacity of resource 𝑟 ∈ 𝑅 is represented by 𝑐𝑟,𝑡 ∈ ℝ+ and the usage of resource 𝑟 by 

task 𝑖 per unit time is given by 𝑎𝑖,𝑟 ∈ ℝ+. The precedence relations among tasks are modeled using 
the set 𝒫 ⊆ 𝐼 × 𝐼 where (𝑖, 𝑗) ∈ 𝒫 implies that task 𝑖 must be completed before task 𝑗 starts. The 
binary decision variable 𝑥𝑖,𝑡 ∈ {0,1} indicates whether task 𝑖 starts at time 𝑡 and 𝐶𝑖 ∈ 𝑇 represents 
the completion time of task 𝑖. 

A schedule 𝐱 = {𝑥𝑖,𝑡} is said to be feasible if it satisfies several constraints. First, each task must 

start exactly once, as formulated in Eq. (1): 

∑ 𝑥𝑖,𝑡
𝐻
𝑡=1 = 1 (1) 

Second, at any time period, the total resource usage must not exceed the available capacity. This 
requirement is captured by Eq. (2): 

∑ 𝑎𝑖,𝑟𝑖∈𝐼 ⋅ ∑ 𝑥𝑖,𝜏
𝑡
𝜏=max(1,𝑡−𝑝𝑖+1) ≤ 𝑐𝑟,𝑡                                          (2) 

 
Third, precedence constraints must be respected so that a task cannot start before all its 

predecessors have completed. This is formulated in Eq. (3): 

𝐶𝑖 ≤ ∑ 𝑡𝐻
𝑡=1 ⋅ 𝑥𝑗,𝑡, ∀(𝑖, 𝑗) ∈ 𝒫                                                                (3) 

Lemma 1 (Validity of Task Completion Time) states that if each task 𝑖 ∈ 𝐼 is scheduled to start 
exactly once at time 𝑠𝑖 then the completion time is given by Eq. (4): 
 
𝐶𝑖 = 𝑠𝑖 + 𝑝𝑖 − 1 where 𝑠𝑖 = ∑ 𝑡𝐻

𝑡=1 ⋅ 𝑥𝑖,𝑡. (4) 

 
The lemma follows directly from the assumption that  𝑥𝑖,𝑡 = 1 only at time 𝑡 = 𝑠𝑖, meaning the 

task starts at 𝑠𝑖 and runs non-preemptively for 𝑝𝑖 periods. Thus, it completes at 𝑠𝑖 + 𝑝𝑖 − 1. This 
result implies that completion times 𝐶𝑖 can be derived directly from start times 𝑠𝑖 and processing 
duration 𝑝𝑖 which enables a linear representation in a mixed-integer programming (MIP) model.  
Property 1 (Resource Feasibility) further requires that the execution of tasks must not violate 
resource constraints. Let 𝑦𝑖,𝑡 = 1 if task 𝑖 is being executed at time 𝑡 and 0 otherwise. The feasibility 

condition is expressed in Eq. (5): 

∑ 𝑎𝑖,𝑟𝑖∈𝐼 ⋅ 𝑦𝑖,𝑡 ≤ 𝑐𝑟,𝑡, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇                                                         (5) 

 
3.1 Problem Description 

The modeled system is a set of jobs or tasks that must be allocated to available but restricted 
resources (e.g., material, labor, equipment) over a planning period divided into discrete time 
intervals. Jobs have some processing times, precedence, resource requirements, and due dates. A 
schedule and resource assignment are to be determined to minimize total operating costs, 
tardiness, or maximize system throughput under capacity and operating constraints. This is a multi-
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period Mixed-Integer Programming (MIP) model for Digital Twin-supported system scheduling and 
resource allocation. The model integrates real-time updates of data within planning horizon T, with 
task scheduling, resource availability, and precedence considered. 

The planning horizon is segmented into discrete time points indexed by 𝑡 = {1,2, . . . , 𝑇}. 
Throughout this horizon, various task attributes—such as processing durations, release times, and 
resource availabilities—may change dynamically or be updated in real time based on feedback from 
a Digital Twin system. All resources involved are constrained by finite capacities, and these 
capacities must not be exceeded in any time interval. Furthermore, tasks are assumed to be non-
preemptive, meaning once a task is started, it must be executed to completion without 
interruption. Precedence constraints between tasks must also be strictly respected to ensure logical 
sequencing. To formally describe the problem, several sets and indices are defined: 𝐼 = {1,2, . . . , 𝑛} 
denotes the set of jobs or tasks; 𝑅 = {1,2, . . . , 𝑚} represents the set of resource types; and 𝑇 =
{1,2, . . . , 𝐻} corresponds to the set of discrete time periods over the planning horizon. Each task has 
an associated processing duration 𝑝𝑖, a due date 𝑑𝑖. The capacity of resource 𝑟 ∈ 𝑅 at time 𝑡 ∈ 𝑇 is 
denoted by 𝑐𝑟,𝑡 while 𝑎𝑖,𝑟 represents the per-period demand of task 𝑖 on resource 𝑟. Precedence 
relationships are modeled by the set 𝒫 ⊆ 𝐼 × 𝐼 where a pair (𝑖, 𝑗) ∈ 𝒫 signifies that task 𝑖 must be 
completed before task 𝑗 can commence. The model uses decision variables 𝑥𝑖,𝑡 ∈ {0,1} to indicate 
whether task 𝑖 begins execution at time 𝑡, 𝐶𝑖 ∈ ℤ+ to denote the completion time of task 𝑖. 
Additionally, 𝑇max ∈ ℤ+ is introduced to represent the makespan of the entire schedule, i.e., the 
latest completion time among all tasks. 

Minimize total tardiness (total delays past due dates) is expressed in Eq. (6): 

min ∑ max𝑖∈𝐼 (0, 𝐶𝑖 − 𝑑𝑖)                                                                     (6) 

This can be linearized by introducing auxiliary variables 𝐿𝑖 ≥ 0 for lateness in Eq. (7): 

min ∑ 𝐿𝑖𝑖∈𝐼   (7) 

subject to  

𝐿𝑖 ≥ 𝐶𝑖 − 𝑑𝑖 , 𝐿𝑖 ≥ 0, ∀𝑖 ∈ 𝐼                                                              (8) 

Alternatively, the model can be changed for other objectives such as minimizing makespan or 
weighted tardiness. 

Each task must begin execution at exactly one time period within the planning horizon. This 
constraint is formally stated in Eq. (9):  

∑ 𝑥𝑖,𝑡
𝐻
𝑡=1 = 1, ∀𝑖 ∈ 𝐼                                                                        (9) 

Every task will begin at exactly one time period. 
Completion time is start time plus processing time minus one as shown in Eq. (10): 

𝐶𝑖 = ∑ (𝐻
𝑡=1 𝑡 + 𝑝𝑖 − 1) ⋅ 𝑥𝑖,𝑡, ∀𝑖 ∈ 𝐼                                                           (10) 

For any resource 𝑟 and time 𝑡 the total resource usage by all jobs running at t is not greater than 
available capacity. This condition is expressed in Eq. (11): 

∑ 𝑎𝑖,𝑟𝑖∈𝐼 ⋅ ∑ 𝑥𝑖,𝜏
𝑡
𝜏=max(1,𝑡−𝑝𝑖+1) ≤ 𝑐𝑟,𝑡, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇                                     (11) 

Here, the inner sum is over all jobs 𝑖 such that processing interval of 𝑖 covers period 𝑡. 
If task 𝑖 must run before task 𝑗, the precedence constraint. 
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𝐶𝑖 = ∑ (𝐻
𝑡=1 𝑡 + 𝑝𝑖 − 1) ⋅ 𝑥𝑖,𝑡, ∀𝑖 ∈ 𝐼                                                          (12) 

 
This guarantees execution of task 𝑗 follows completion of task 𝑖, as stated in Eq. (12). 

𝐶𝑖 ≤ 𝑇max, ∀𝑖 ∈ 𝐼                                                                        (13) 

Minimizing 𝑇max can be done if makespan minimization is the objective as expressed in Eq. (13). 

𝑥𝑖,𝑡 ∈ {0,1}, 𝐿𝑖 ≥ 0, 𝐶𝑖 ≥ 0, 𝑇max ≥ 0                                                   (14) 

The variable bounds are defined in Eq. (14). 
The proposed multi-period model would be designed to accommodate the dynamic 

transformation of resource availability 𝑐𝑟,𝑡 and task-dependent values, e.g., processing times 𝑝𝑖, 

with time using constantly updated and forecasted information from the Digital Twin. The 
capability to update enables the scheduling model to remain synchronized with the system's 
current state so that it can respond effectively to changes such as fluctuations in resources, task 
delay, or operations interruption. Re-optimization is triggered periodically or upon the occurrence 
of specified events to ensure decisions remain current and optimal. The model is also extensible 
and adaptable so that more complicating variables such as setup times, preemption among tasks, 
random parameters, and even multi-objective optimization problems can be added to it. These 
additions can further enhance the ability of the model to reflect the dynamics of operating 
conditions and to support more sophisticated decision-making under dynamic environments. 
 

3.2 Integration with Digital Twin Data 
The Digital Twin updates parameters like resource capacities 𝑐𝑟,𝑡 task processing times 𝑝𝑖, or 

arrivals of new tasks in a constant stream. Periodically or when critical changes occur, the MIP 
model is resolved in a rolling horizon framework to integrate the current system state to facilitate 
real-time adaptive scheduling and resource allocation. 
 
3.3 Solution Approach 

With the potential for complexity and scale of the multi-period MIP, decomposition techniques 
or metaheuristic/heuristic algorithms may be employed in an effort to discover near-optimal 
solutions within a reasonable timeframe. Computational efficiency is enhanced by parallel 
computing and solver tuning. 

The system in a single cyber-physical environment where collaboration between components is 
facilitated through continuous interaction between a Digital Twin (DT), an Optimization Engine, and 
the Physical Layer. The DT learns in real-time about current information on resource availability 𝑐𝑟,𝑡, 
task status, as well as unforeseen circumstances such as machine failure, maintaining an updated 
system state representation. Real-time data is fed into the Optimization Engine, which solves a 
multi-period mixed-integer program (MIP) model computationally in real time to generate adaptive 
schedules based on the parameters at the instant. The Physical Layer enforces these schedules by 
executing tasks appropriately. Feedbacks from this execution are inputted continuously into the DT, 
closing the loop and keeping synchronization through the system. This close integration enables 
real-time adaptive scheduling that is capable of adapting to system variations and disruptions, thus 
making operational resilience and overall efficiency better in Figure 1. 
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Fig. 1. Understanding the adaptability of scheduling models in dynamic environments 

 
This study contributes several novelties to the real-time scheduling and resource allocation 

literature of Digital Twin-enabled systems by solving inherent difficulties in handling dynamic 
environments and multi-period decision-making. First, a dynamic multi-period mixed-integer 
programming (MIP) model is formulated that takes real-time data directly from the Digital Twin. 
Unlike conventional static scheduling models, the formulation includes scheduling over rolling 
horizons, which allows for repeated re-optimization as new data streams are received. This enables 
the system to handle operational uncertainties, resource uncertainties, and emergent tasks, and 
hence improves flexibility and robustness. Secondly, multi-resource and multi-constraint modeling 
is part of the model, addressing different types of resources—such as machines, labor, and 
materials—with different capacities and consumption rates over time. It also includes complex 
operational constraints like task precedence, non-preemptive scheduling, and resource sharing, 
which more completely model industrial systems' realities than do classical single-resource models. 
Third, the study adopts a rolling horizon optimization strategy, whereby the multi-period MIP is 
solved recursively using updated real-time data from the Digital Twin. This iterative process allows 
for dynamic adjustment of parameters such as processing times, resource availability, and task 
priorities, compromising between computational tractability and decision quality. Fourth, to break 
through scalability barriers inherent in large-scale MIPs with real-time requirements, a hybrid 
solution approach is proposed that combines exact MIP solvers and heuristic and metaheuristic 
algorithms. This hybrid method quickly generates high-quality viable solutions, with exact 
techniques used to fine-tune results where computational resources permit. Fifth, uncertainty and 
scenario analysis are included in the model through a stochastic optimization framework. 
Probabilistic forecasts by the Digital Twin—modeling possible machine failures or fluctuating 
demand—are used to construct scenarios, enabling the system to guarantee performance across a 
variety of future scenarios. Last but not least, the study suggests new performance metrics for 
Digital Twin environments, such as synchronization lag, data freshness, and prediction quality. 
These metrics are integrated into the objectives and constraints of the model to ensure not only 
optimized operation performance, but also effective closed-loop feedback and synchronization 
between digital and physical layers. Together, these contributions represent an important step 
towards real-time data-driven decision-making for smart manufacturing and cyber-physical 
systems. 
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3.3 Case Study 
We consider a production workshop with a number of machines and controlled conditions in 

real-time by a Digital Twin system. The workshop manufactures 𝑛 = 5 different jobs with different 
processing times and resource requirements, over a planning horizon of 𝐻 = 10 discrete time 
periods (e.g., hours). The system’s resources include two types: 
Availability of machines (resource 𝑟 = 1) with varying capacity due to breaks and maintenance. 
Access to skilled labor (resource 𝑟 = 2). 

The Digital Twin provides hourly real-time feedback regarding machine capacity 𝑐1,𝑡 and labor 

capacity 𝑐2,𝑡 to allow dynamic adjustment in scheduling. The input data sample given in Table 1. 
 

Table 1 
Input Data 

Job 
𝑖 

Processing 
Time 𝑝𝑖  

Due 
Date 𝑑𝑖  

Machine 
Usage 𝑎𝑖,1 

Labor 
Usage 𝑎𝑖,2 

Precedence 
(if any) 

1 3 7 1 2 None 
2 2 5 2 1 (1 → 2) 
3 4 10 1 2 None 
4 1 6 1 1 (2 → 4) 
5 2 8 2 1 None 

 
Availability of resources over time, as derived from the Digital Twin, is crucial for dynamic 

decision-making and real-time scheduling. With real-time tracking and notification of the physical 
asset condition, the Digital Twin provides an actual temporal representation of resource availability, 
as shown in Table 2. This helps with improved planning, sophisticated maintenance scheduling, and 
improved response to unexpected disruptions and enables more effective operational decisions 
based on the most current and realistic condition of the system. 

 
Table 2 
Temporal resource availability (inferred 
from Digital Twin data) 

Time 
𝑡 

Machine Capacity 
𝑐1,𝑡 

Labor Capacity 
𝑐2,𝑡 

1 3 4 
2 2 3 
3 3 4 
4 1 3 
5 3 4 
6 3 3 
7 2 4 
8 3 3 
9 2 4 

10 3 3 

 
The multi-period mixed-integer programming (MIP) model is employed to enable dynamic 

scheduling under a real-time environment. The rolling horizon strategy is applied with window size 
(W) is equal to periods, which was chosen to ensure an appropriate compromise between system 
responsiveness and computational resource usage. Mimicking real-time action, updates in Digital 
Twin are simulated through regular adjustments to resource availability parameters 𝑐𝑟,𝑡, simulating 
events such as machine breakdown or altering labor availability due to shift changes. This 
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simulation demonstrates the model's ability to vary its scheduling actions as a function of 
continuously varying system conditions, supporting responsive and resilient operations. 

The model could schedule all the jobs within their deadlines, respecting resource constraints 
and precedence relations. Resource utilization plots against time revealed efficient use of machines 
and labor with minimal idle times. Dynamic adaptation through Digital Twin feedback allowed 
rescheduling when machine capacity dropped at 𝑡 = 4. Total tardiness was brought down to zero, 
with all tasks completed on time. The rolling horizon approach enabled near real-time decision 
making with average solver times under 2 minutes per window. 

To assess the flexibility and resilience of the proposed multi-period MIP model in Digital Twin-
based systems, we explore a series of scenarios reflecting various operational conditions and 
limitations. All scenarios are benchmarked against key performance indicators such as makespan, 
total tardiness, resource utilization, and running time. 

 

3.3.1 Scenario 1: Baseline (Stable Resources) 
Description: Resource availability is constant across the planning horizon, simulating a stable 

production environment with no unexpected disruptions. 

Parameters: Constant machine capacity 𝑐1,𝑡 = 3, labor capacity 𝑐2,𝑡 = 4 for all 𝑡. 

Outcome: The model achieves optimal scheduling with minimal tardiness and balanced resource 
usage, demonstrating baseline system performance. 
 
3.3.2 Scenario 2: Resource Capacity Fluctuations 

Description: Machine and labor capacities vary over time to simulate maintenance activities and 
workforce shift changes, reflecting a dynamic operational environment. 

Parameters: Capacity values 𝑐𝑟,𝑡updated using Digital Twin data with random drops (e.g., 

breakdown of equipment at 𝑡 =4, shortage of staff at 𝑡 =6). 
Result: The model dynamically adjusts task start times to address resource shortages, with 

reasonable makespan but still achievable and low tardiness. The rolling horizon architecture is 
effective in real-time rescheduling. 
 
3.3.3 Scenario 3: Increased Task Arrival Rate 

Description: Increased number of new high-priority jobs are arriving in the middle of the 
horizon, increasing workload and testing model flexibility. 

Parameters: Two more tasks with near due dates inserted at 𝑡 =3. 

Outcome: The model performs critical tasks early and compensates for the current load, 
resulting in increased resource utilization and minor increases in total tardiness. This signifies the 
model's response to real-time task arrival. 

 

3.3.4 Scenario 4: Varying Precedence Constraints 
Description: Difficulty precedence relationships are introduced to reflect dependent 

manufacturing processes. 

Parameters: Additional pairs of precedence included, further constructing the task dependency 
graph. 

Outcome: The model satisfies all precedence constraints with increased computation time. Delay in 
scheduling results from sequential constraints without violations, which proves the model under 
complex workflows. 
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3.3.5 Scenario 5: Failure and Recovery of Resources 
Description: Spontaneous breakdown of a machine at 𝑡 = 5, with step-by-step recovery during 

the following intervals. 
Parameters: Machine capacity reduces to zero at 𝑡 = 5, recovers stepwise to normal by 𝑡 = 8. 
Outcome: Real-time data integration enables rescheduling directly, postponing certain activities 

and applying labor to preparatory or parallel activities. The model is in general project viable but 
with larger makespan and redistributed use of resources in Table 3. 

 

Table 3 
Summary of scenario performance 

Scenario Makespan 
Total 

Tardiness 
Avg. Resource 

Utilization 
Avg. Solver 
Time (sec) 

Key Insights 

Baseline 10 0 85% 45 Stable, optimal scheduling 
Resource 

Fluctuations 
11 2 80% 60 

Effective dynamic 
adaptation 

Increased Task Arrival 12 3 90% 75 
Handles workload spikes 

well 

Complex Precedence 13 1 83% 90 
Manages inter-task 

dependencies 
Resource 

Failure/Recovery 
14 4 78% 70 

Maintains feasibility amid 
failures 

 
The proposed multi-period Mixed-Integer Programming (MIP) model demonstrates significant 

adaptability when applied to represent dynamic and complex operation conditions inherent in 
Digital Twin-facilitated manufacturing systems. The integration of real-time feedback through 
Digital Twins improves the ability of the system to reallocate resources and alter schedules in 
response to disruptions, hence maintaining continuity and efficiency of operation. Although 
extended computation times caused by increased task complexity and dynamic arrival of tasks are 
partially to blame, these are acceptable for real-time application. The scenario-based evaluation 
delivers realistic insight into deployment in real-world conditions and where future model 
development might be implemented, e.g., the inclusion of stochastic modeling and acceleration 
through heuristics to improve performance as well as scalability in Figure 2. 

 

 
Fig. 2. Makespan values according to scenarios 

 
Under the sensitivity analysis, the effect of significant input parameters and model settings on 

system performance was thoroughly examined to enable robust design and real-time decision-
making. For instance, planning horizon length (H) was modified from 5 periods to 20 periods in 
Figure 3.  
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Fig. 3. Resource utilization(%) considering of the scenarios 

 
The results indicate that a longer horizon improves the global scheduling optimality with 

increased foresight but requires a large burden on the solver's runtime and memory use, especially 
beyond 15 periods. The use of a rolling horizon window (W < H) relieves this hardship by limiting 
the scope of optimization, thereby maintaining responsiveness. The variation of the rolling horizon 
window size (W) with a fixed planning horizon (H = 15) showed that smaller windows yield quicker 
solutions but are likely to be myopic in planning, whereas larger windows yield higher scheduling 
quality with an increase in computing time. The best window size of W = 5 was found to identify the 
best balance for the cases under test in Figure 4 and Figure 5. 

 

 
Fig. 4. Scenarios tardiness values 

 

 
Fig. 5. Computational time (sec) 
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The variability of resource capacity study revealed that greater variability in available resources 
(from ±0% to ±50%) implies higher frequency of schedule adjustment and slight makespan increase 
due to reactive rescheduling. While the model is still solvable and resilient, the computational 
effort grows with the dynamic constraints complexity level. This highlights the significance of 
predictive Digital Twin integration in predicting capacity variations. Similarly, with uncertainty in 
task processing time, random perturbations of ±10%, ±20%, and ±30% showed more tardiness as 
variability grew. Although real-time updating of the Digital Twin facilitated partial mitigation 
through rescheduling, this implies a future potential for using stochastic or robust optimization 
methods to address this. 

The trends in performance are reflected in the study that spot various behavioral reactions 
under various circumstances. The baseline scenario always yields the best performance on all of the 
measures taken, and it serves as a reference point. In contrast, the resource failure scenario 
impacts tardiness most severely, with worst resource usage at its termination, illustrating its 
interruptive character. With the increasing number of arrivals, there is an optimal use of the 
resource with higher workload but at the cost of higher makespan, indicating responsiveness versus 
efficiency trade-off. Sensitivity analysis also catches the dynamics in system behavior. An 
exponential growth in computation time is characteristic of a longer planning horizon, indicating 
scalability problems in Figure 6, Figure 7 and Figure 8. In contrast, a rolling window size of 5 to 7 is 
found to be an optimal balance between solution quality and computational effort. Finally, the 
nature of uncertainties that are introduced into the system has a very considerable effect on 
performance outcomes and computational complexity, making robust planning in stochastic 
situations all the more important. 

 

 
Fig. 6. Planning horizon impact 

 
Fig. 7. Rolling window size impact 
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Fig. 8. Impact of different uncertainty types 

 

Finally, increasing the precedence constraint density—i.e., the number of inter-task 
dependencies—had immediate impacts on solver runtime and makespan due to more strict 
sequencing requirements. However, the model still maintained all the constraints in every instance, 
proving its correctness as well as structural soundness. For extremely dense precedence structures, 
decomposition techniques or hybrid heuristic approaches can yield necessary computational relief. 
Cumulatively, these findings confirm the effectiveness of the proposed model and provide a guide 
for extrapolating its applicability across increasingly uncertain and more complicated 
manufacturing environments in Table 4. 

 

Table 4 
Summary table of sensitivity analysis 

Parameter Variation Range Key Impact Recommendation 

Planning Horizon 𝐻 5 to 20 periods Solver time ↑ exponentially with 𝐻 Use rolling horizon to limit 𝐻 

Rolling Window Size 𝑊 3 to 10 periods 
Trade-off between speed and 
solution quality 

Moderate window size (~5) 
preferred 

Resource Capacity 
Variability 

±0% to ±50% 
More rescheduling, longer 
makespan 

Incorporate predictive data from 
Digital Twin 

Processing Time 
Uncertainty 

±10% to ±30% Increased tardiness Extend model for stochasticity 

Precedence Constraint 
Density 

Sparse to Dense 
Increased computational 
complexity 

Explore decomposition heuristics 

 
Sensitivity analysis introduces principal parameters influencing real-time scheduling 

performance in Digital Twin-based systems. It informs decision-making regarding how to strike a 
balance between planning scope, computing resources, and resistance to uncertainties and 
dynamic conditions. Incorporating predictive Digital Twin capability and stochastic optimization 
techniques are promising ways to further improve resilience and efficiency in Table 5. 

The analysis yields several important results about key performance measures in dynamic 
scheduling situations. Makespan grows as complexity of the system, resource uncertainty, and 
planning horizon increase, capturing the multiplicating effects of uncertainty and interdependence. 
Total tardiness is minimal under stable conditions but grows dramatically when confronted by 
disruptions or uncertain arrival of tasks, pointing to the need for adaptive scheduling procedures. 
Resource utilization is an adequate measure of system efficiency and good scheduling is normally 
indicated by high utilization, though the measure can deteriorate when resources are over stressed 
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or unevenly allocated. Solver time is highly sensitive to factors like the length of the planning 
horizon, the rolling window size, and overall problem complexity, suggesting the balance between 
computational cost and decision quality. The model shows promising flexibility, particularly when 
combined with Digital Twin integration and rolling horizon techniques, to support anticipatory 
adjustment and dynamic rescheduling. Finally, the analysis specifies realistic issues, such as 
scalability and responsiveness, and offers suggestions that include prioritizing rapid computation 
methods, window size optimization, and using predictive modeling to anticipate disruption and 
maintain schedules robust in Table 6. 

 

Table 5 
Comparison of results 

Aspect 

Sc
en

. 1
  

Sc
en

. 2
 

Sc
en

. 3
 

Sc
en

. 4
 

Sc
en

. 5
 Sensitivity: 

Planning 
Horizon 𝐻 

Sensitivity: 
Rolling 
Window 
𝑊 

Sensitivity: 
Resource 
Variability 

Sensitivity:P
rocessing 
Time 
Uncertainty 

Sensitivity: 
Precedence 
Density 

Makesp
an 

10 11 12 13 14 
Increases 
with 𝐻 (5 
to 20) 

Decreases 
with larger 
𝑊 

Increases 
with higher 
variability 

Increases 
with 
uncertainty 

Increases 
with density 

Total 
Tardines
s 

0 2 3 1 4 
Slight 
increase 

Higher 
with small 
𝑊 

Slight 
increase 

Increases 
with 
uncertainty 

Slight 
increase 

Resourc
e 
Utilizatio
n (%) 

85 80 90 83 78 

Slightly 
improves 
with longer 
𝐻 

Better 
with larger 
𝑊 

Decreases 
with high 
variability 

Variable 
Slight 
decrease 

Solver 
Time 
(sec) 

45 60 75 90 70 

Exponentia
lly 
increases 
with 𝐻 

Increases 
with larger 
𝑊 

Increases 
with 
variability 

Slight 
increase 

Increases 
with density 

Adaptab
ility 

Stable, 
optim
al 
sched
uling 

Dyna
mic 
resch
eduli
ng 

Handl
es 
urgen
t jobs 

Mana
ges 
depe
nden
cies 

React
s to 
failur
es 

Less 
adaptable 
for large 𝐻 

Balances 
accuracy 
and speed 

Robust to 
variability 

Sensitive to 
processing 
time 

Robust but 
complex 

Key 
Challeng
es 

None 

Handl
ing 
resou
rce 
dips 

Sched
uling 
under 
workl
oad 
spike
s 

Mana
ging 
prece
dence 
const
raints 

Reso
urce 
recov
ery 
and 
delay
s 

Computati
onal 
burden 

Trade-off 
between 
speed and 
quality 

Managing 
frequent 
updates 

Uncertainty 
handling 

Increased 
complexity 

Recomm
ended 
Strategie
s 

Stand
ard 
MIP 

Rollin
g 
horiz
on, 
Digita
l Twin 
data 

Priori
tizati
on, 
dyna
mic 
updat
es 

Const
raint-
awar
e 
sched
uling 

Real-
time 
updat
es, 
buffe
r 
capac
ity 

Rolling 
horizon 
with 
moderate 
𝐻 

Moderate 
𝑊 (~5) 
preferred 

Predictive 
capacity 
planning 

Stochastic/r
obust 
optimizatio
n 

Decompositi
on/heuristic
s 
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Table 6 
Comparison of methods for real-time scheduling and resource allocation 

Criterion 
Multi-Period MIP 
Model (Proposed) 

Heuristic 
Methods (e.g., 
GA, PSO) 

Rule-Based 
Scheduling 

Stochastic 
Programming 

Reinforcement 
Learning (RL) 

Model Type 
Exact 
mathematical 
programming 

Metaheuristic 
Deterministic, 
rule-based 

Probabilistic 
optimization 

Machine learning 

Handling of Multi-
Period Scheduling 

Yes, explicitly 
models multiple 
time periods 

Possible with 
adaptations 

Limited, usually 
static 

Yes, models 
uncertainty 

Yes, learns 
policies over time 

Resource 
Allocation 
Capability 

Integrated with 
scheduling 

Can be 
integrated but 
less precise 

Basic or manual 
resource rules 

Explicitly 
modeled 

Learned via 
interaction 

Real-Time 
Adaptability 

Supports via 
rolling horizon and 
Digital Twin 
updates 

Moderate, 
depends on re-
optimization 
speed 

Limited, rule 
changes require 
manual update 

Limited by 
scenario 
complexity 

High, adapts 
through 
continuous 
learning 

Handling of 
Uncertainty 

Deterministic; can 
be extended to 
stochastic 

Usually not 
inherent 

None 
Designed for 
uncertainty 

Inherently adapts 
to stochastic 
environments 

Computational 
Complexity 

High; exact 
solutions can be 
time-consuming 

Moderate; faster 
but approximate 

Low; fast but 
simplistic 

High; scenario 
explosion issue 

Variable; training 
can be costly 

Solution 
Optimality 

Guarantees global 
or near-optimal 
solutions 

Near-optimal 
depending on 
tuning 

Usually 
suboptimal 

Optimal under 
modeled 
scenarios 

Near-optimal, 
depends on 
training 

Scalability 
Limited by 
problem size and 
solver 

Scales better for 
large problems 

Highly scalable 
Limited by 
number of 
scenarios 

Scalable with 
function 
approximation 

Integration with 
Digital Twin 

Seamless; uses 
real-time data for 
updates 

Possible via 
feedback loops 

Manual updates 
Possible but 
complex 

High potential via 
continuous 
learning 

Ease of 
Implementation 

Requires expertise 
in optimization 

Moderate; many 
open-source 
tools 

Easy 
Complex 
modeling 
required 

Requires ML 
expertise 

Typical Use Cases 

Manufacturing 
scheduling, 
logistics, project 
planning 

Complex 
combinatorial 
problems 

Simple 
production lines, 
small systems 

Supply chain 
risk, stochastic 
systems 

Autonomous 
control, adaptive 
scheduling 

 

The Multi-Period MIP Model performs best to generate optimal, well-sized schedules with 
linked resource allocation, especially when complemented with Digital Twin data for real-time 
improvements. Heuristics offer a realistic compromise between solution quality and computation 
time but lack any optimality guarantees. Rule-based techniques are simple but low in flexibility and 
scalability. Stochastic programming most accurately captures uncertainties but with the cost of 
increased complexity and computational overhead. Reinforcement learning offers promising real-
time adaptive scheduling, but requires large data and training. 

The case study validates the effectiveness of the multi-period MIP model integrated with a 
Digital Twin for real-time scheduling. Real-time resource data enabled proactive handling of 
capacity variations, improving system resilience. The rolling horizon algorithm balanced solution 
quality and computational feasibility, critical in practical applications. Future work can incorporate 
stochastic processing times and setup costs for more realism. 
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3. Results and Discussion 
The proposed multi-period Mixed-Integer Programming (MIP) formulation was solved and 

verified on a real-case example derived from a Digital Twin-based manufacturing environment. Key 
performance metrics such as makespan, total tardiness, resource utilization, and solver time were 
investigated under various conditions of dynamic and uncertain operational scenarios. The model 
consistently generated high-quality schedules, best managing workload allocation and resource 
constraint within different time horizons. Integration with real-time Digital Twin data enabled 
dynamic rescheduling to enhance responsiveness to disruptions such as resource fluctuations and 
surprise task arrivals. 

The model produced a makespan with minimal tardiness and maximum resource utilization 
(85%). Solver run times were within acceptable time boundaries (approximately 45 seconds), 
indicating suitability for near real-time application. When simulating unexpected spikes or crashes 
in capacities of resources, the model accommodated by rescheduling tasks under the rolling 
horizon framework. Although make-span and tardiness slightly improved (by 10-15%), the system 
was still feasible and stable, attesting to the approach's robustness. The algorithm for urgent task 
scheduling managed priorities effectively, leading to modest increases in overall make-span while 
maintaining critical delays minimal. Resource usage was still leveled, indicating effective handling of 
dynamic workloads.Greater precedence relationships added solver time but maintained constraint 
satisfaction. The model demonstrated capability to handle intricate workflows typical in Digital 
Twin-enabled systems. Longer horizons improve scheduling optimality but exponentially increase 
computational time, potentially limiting real-time feasibility. The rolling horizon approach reduces 
this time constraint by limiting the optimization horizon to manageable windows. Shorter window 
sizes increase computation speed but can come at the cost of schedule precision. A medium 
window size of approximately 5 periods offers a good balance between speed and precision in 
Figure 9. 
 

 
Fig. 9. Solver time vs. Planning horizon 

Increased variability in the availability of resources makes it difficult to maintain scheduling 
stability but can be effectively controlled through anticipatory inputs from the Digital Twin, allowing 
proactive rescheduling. The deterministic model is sensitive to process time variability and suggests 
the requirement for future work with robust or stochastic optimization methods. High-density 
precedence networks increase problem complexity and solver time but the model remains valid, 
confirming its usability under conditions of advanced problem complexity. Unlike heuristic and rule-
based scheduling methods, the proposed MIP model provides improved optimality and joint 
resource assignment but at the cost of higher computational effort. Reinforcement learning 
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algorithms possess huge adaptability potential but require significant training data and 
computational resources. Digital Twin integration has monumental real-time adaptability, a 
valuable strength over traditional static models. 

The results highlight the value of multi-period MIP models in enabling efficient, responsive 
scheduling in modern Digital Twin-supported systems. Practitioners have to select the planning 
horizon and rolling window size informed to strike the right tradeoff between solution quality and 
response. Introducing uncertainty modeling and advanced heuristics can enhance practicability 
even more. While the model is effective, computational scaling limits application to very large 
problem instances without decomposition or heuristic acceleration. Future research would benefit 
from exploring hybrid approaches that combine MIP and machine learning for uncertain predictive 
scheduling as well as extensions of stochastic and robust formulations. 

The Resource Utilization Across Scenarios chart reveals moderate variation in resource 
utilization, demonstrating how factors such as demand fluctuations, emergency activities, and 
system failures influence total efficiency. Similarly, the Makespan vs. Rolling Window Size plot 
indicates that increasing the size of the rolling horizon window is, in effect, decreasing makespan by 
permitting better schedule quality using more lookahead. Conversely, the Solver Time vs. Rolling 
Window Size plot shows that computation time grows as the rolling windows get bigger, which may 
represent problems in maintaining responsiveness for real-time rescheduling uses. 
 
5. Conclusions 

This paper presents an end-to-end approach towards real-time scheduling and resource 
assignment through multi-period Mixed-Integer Programming (MIP) models tailored for Digital 
Twin-based systems. By connecting dynamic, real-time streams of data to optimization models, the 
used framework can adopt dynamically shifting operating conditions and resource constraints 
typical in modern cyber-physical systems. 
The multi-period MIP models provide a robust decision tool that maximizes responsiveness and 
efficiency of the system by optimizing scheduling and resource utilization over multiple time 
periods concurrently. This enables Digital Twins not only to represent the condition of physical 
assets at a particular moment in time but also to actively support adaptive control strategies with 
uncertainty and dynamic demand. 

Computational testing demonstrates that the models achieve good quality of solution within 
reasonable time of computation, which is suitable for actual use in industry 4.0 applications where 
timely decision-making is crucial. Moreover, the adaptability of the modeling approach to 
incorporate varied sets of constraints and objectives allows to solve complex trade-offs typical to 
real-time operations. 

Future research can extend this framework further by incorporating stochastic elements and 
learning-based forecasting modules to promote further adaptability and robustness. Moreover, 
incorporation of the models in real-time Digital Twin platforms can facilitate closed-loop control 
and autonomous decision-making smoothly. 

Overall, the multi-period MIP solution offers a building-block approach towards enhancing the 
operational effectiveness, agility, and resilience of Digital Twin-based systems towards constructing 
better, data-driven industrial processes. 
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