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disruptive developments in the industry 4.0 process, and increasing
pressures in the context of sustainability and green policies necessitates the
use of advanced technologies to ensure efficiency, transparency, and
sustainability. This study developed a multi-criteria decision-making-based
framework to evaluate the adoption of new and advanced technologies
related to cold chain logistics. In this context, four alternative solutions—IoT-
based sensor systems, blockchain-based traceability platforms, cloud-based
management software, and Al/machine learning-supported forecasting and
optimization tools—were examined within the framework of eleven criteria.
These criteria include installation cost, data security, traceability capability,
ease of use, integration potential, energy consumption, system reliability,
compliance with standards, scalability, environmental impact, and
stakeholder acceptance. While the findings show that C10 Environmental
Impact, C8 Compliance and Standards, and C9 Flexibility and Scalability
criteria are the prominent criteria for determining the most appropriate
technology, A1 IoT Sensor Systems have been chosen as the top priority
alternative that should be adopted and integrated into business models.
Ultimately, a thorough robustness check was conducted to verify the validity
and reliability of the model proposed in this study.

1. Introduction

Cold chain operations are one of the most critical components of modern supply chains and
logistics processes to ensure food safety and protect pharmaceuticals, medical supplies, and sensitive
products against adverse situations such as spoilage and waste. In this scope, insufficient food
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transport and warehousing operations, interruptions in the cold chain [1], unsuccessful planning
processes, and mistakes of the last users are the leading reasons for the food lost and waste (FLW)
[2] Effective and efficient structuring and management of cold chains guarantees the quality and
safety of food products and greatly influences and shapes cost optimization, environmental impact
on operations, and customer satisfaction [3]. Each perishable product has a certain optimal storage
temperature; whether it is too high or too low will affect its safety and quality [4]. Especially in food
and pharmaceutical logistics, changes and fluctuations in ambient temperatures or operational errors
can cause millions of dollars in losses for businesses and their stakeholders. In that regard, the correct
choice, prioritization, and integration of technological applications into the system have become a
critical and strategic necessity regarding operational efficiency and effectiveness, and their
environmental and social impacts.

Depending on the disruptive technologies emerging in the Industry 4.0 process and the
increasingly prominent concept of digital transformation, loT-based sensor systems, blockchain
solutions, cloud-based management software, and artificial intelligence/machine learning-supported
optimization tools have become more prominent as advanced and innovative technologies that can
be used in cold chain operations. The adoption of these technologies and their integration into the
business models of logistics businesses conducting cold chain operations make it necessary to
consider multidimensional criteria such as cost, safety, sustainability, ease of integration, and
stakeholder acceptance, as well as the technical performance of these technologies. In this direction,
determining and prioritizing the most appropriate technology is a highly complex decision-making
problem considering the non-linear relationships between the criteria, the multidimensional,
contradictory and complex nature of the criteria, as well as the uncertainties, ambiguities and
decision-maker hesitations inherent like the cold chain logistics industry, and to solve this problem
reasonably, in addition to addressing the criteria in a balanced and reasonable manner, A strong and
reliable decision-making framework is needed to enable effective modeling and management of
uncertainties.

Although technology selection and adoption have been discussed from different perspectives in
the literature on cold chain applications, the studies have primarily focused on certain factors and
discussed the benefits of technologies to be used in cold chain applications with their qualitative
dimensions. Decision-making tools and models are mostly neglected in the literature, and there is no
adequate relationship and integration between expert evaluations and systematic and data-based
approaches. Due to these research gaps in literature, decision-makers often make choices based on
their intuitive and limited knowledge, leading to erroneous investment decisions and increased
operational costs and uncertainties.

This study develops an integrated decision-making model consisting of Subjective & SITDE and
RAM methods with the help of p, g-Quasirung Orthopair Fuzzy Sets (p, g-QROFS) to fill these research
gaps and eliminate theoretical evaluation inadequacies. By applying this model, advanced technology
alternatives that can be used in cold chain operations, such as loT sensor systems, blockchain-based
platforms, cloud-based software, and Al/ML solutions, were analyzed in the light of the evaluations
made by four professionals who are experts in the fields of logistics, informatics, food safety and
sustainability, taking into account eleven basic criteria.

The decision-making model used in this study provides significant advantages. Foremost, p, g-
Quasirung Orthopair Fuzzy Sets capture and process uncertainty and ambiguity much more
effectively than traditional fuzzy sets [5]. Recognizing the dynamic nature of decision-makers' criteria,
this framework enhances the applicability of decision-making processes by analyzing point values
tied to different parameters, enabling the realistic modeling of decision scenarios and ensuring that
the model effectively reflects the complexities involved in real-world decision-making processes [5].
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At the same time, the ability to adjust the parameters in the p and q aggregation operators by
decision-makers in line with the specific requirements and preferences of the scenario injects a high
level of adaptability into the decision process, enhancing its applicability to a wide range of real-world
situations that consider different degrees of membership and non-membership [6].

Subjectively process linguistic evaluations of decision-makers using mathematical operations of
the fuzzy set preferred in this study to determine criterion weightings, which are integrated with the
SITDE method, an objective weighting approach developed by Gopisetty and Sama [7]. This approach
integrates subjective and objective information, resulting in more balanced results. The RAM
method, which was ultimately chosen for ordering alternatives, is highly understandable, practical,
and flexible, as well as a compelling and consistent sorting approach. Based on these advantages, the
proposed p, g-QROF Subjective — SITDE & RAM integrated methodological framework stands out as
a potent and robust decision-making tool compared to traditional decision-making approaches, as it
digitizes expert opinions in a rational context by considering cost and benefit criteria together, and
allows multidimensional, transparent, flexible, and reproducible analyses.

The innovations provided by this study can be summarized in three dimensions: (i) it combines
the criteria that are discussed in the literature in a holistic structure, (ii) it reduces subjectivity by
integrating expert opinions with a strong mathematical infrastructure, (iii) technologies are evaluated
not only in terms of their operational benefits but also in terms of environmental and stakeholder
dimensions, and (iv) p, g-QROFS-based Subjective & SITDE and RAM methods are proposed. Thus,
the study both provides a methodological and contextual contribution to the academic literature and
develops an applicable roadmap for the strategic decision processes of enterprises.

The rest of the paper is structured as follows: Section 2 describes the methodological framework
used and the theoretical background of the MCDM approach. Section 3, the research design, criteria,
alternatives, and the characteristics of the expert group are introduced in detail. Section 4 presents
the findings regarding the implementation of the proposed model and discusses the results. Section
5 discussion 6 concludes the study, discusses theoretical and practical contributions, and indicates
suggestions for future research.

2. Methodology

This study proposes a Subjective — SITDE & RAM integrated decision-making model based on p,
g-QROF sets to eliminate the research gaps and theoretical evaluation deficiencies discussed above.
The proposed model is designed to capture the multidimensional and complex nature of decision-
makers' evaluations in the context of modeling and managing uncertainties, ambiguities, expert
hesitations, and evaluating and prioritizing innovative technologies that have the potential to be used
in cold supply chains. Beyond decision-making approaches that are often one-dimensional and have
methodological deficiencies, it offers a holistic, flexible, and robust structure that can reflect the
complexities of decision-making in real-world conditions within supply chain and logistics
management. By integrating subjective and objective weighting approaches, sequencing
alternatives, and modeling highly complex uncertainties, the decision-making framework offers
theoretical contributions and improves practical and reliable applicability for decision-makers and
practitioners.

2.1 Preliminary information on p, g — QOFS
This section illustrates the evolution of p, g — QOFS, summarizing its key definitions and

characteristics. Let, = is the universe of discourse containing the elements of the p, g — QOF sets.
Definition 1. Intuitionistic Fuzzy Set (IFS): An IFS can be described as follows [8].

}z{x,<u1(x),81(x)>:xe5} (1)
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The membership and non-membership degrees, such as p, (x) —[0,1]and 9, (x)—[0,1]are
affixed with the following condition: 0<p, (x)+9, (x)<L;VxeZ

Definition 2. Pythagorean Fuzzy Set (PFS): A PFS is defined as follows:
Pz{x,(up(x),SP(x»:er} (2)

The condition fulfilled by the membership and non-membership values is represented by
OSpP(x)2+8P(x)2 <L VxeZE.

To enhance decision-makers’ flexibility by extending the definitions, g-ROFS was introduced by

researchers [9-11]. The definition is given below.
Definition 3. Rung Orthopair Fuzzy Set (q-ROFS)

Q={x,<uQ (x),SQ (x)>:er} (3)
A natural integer q is utilized in g-ROFS as the exponent to express the inequality in the following

form Ogug(x)q+8g(x)qsl;Ver;qzl. The degree of indeterminacy is given as:

Ty = {/1—(HQ (x))q —(SQ (x))q ;Vxe B
Seikh and Mandal [12] expanded g-ROFS into a more generalized and flexible form to better

capture vagueness, which resulted in the definition of p, g-QOFS as follows.
Definition 4. Quasirung Orthopair Fuzzy Set (p, g-QOFS)

pz{x,(up(x),Sw(x»:xeE} (4)
Differing from g-ROFS, p, q-QOFS applies two natural integers, p and q, as powers to uphold the

condition: 0<p, (x)" +9 (x)" <1;VxeE. The degree of indeterminacy is provided as:

T, = {/l—(u@, (x))p —(8@ (x))q ;VxeEB;e=LC.M(p,q)

Different values of the natural integers pand q characterize the p, g-QOFS in terms of other types
of fuzzy numbers, suchas IFS(p=¢g=1),PFS(p=¢g=2),q-ROFS (p=g¢g) and so on.

Introducing the p, g Quasirung Orthopair Fuzzy Number (p, g-QOFN) allows us to preserve the
basic definition and characteristics of p, g-QOFS while proceeding with further definitions.

Definition 5. Operation on p, q-QOFNs: Let, o =(u,9),, =(,,3,)and o, =(u,,3,)are any

three p, g-QOFNs. Then the following operations are defined.
operations are defined

Sa. o, <, iffp, <p, and 9, > 9,

Sb. o, =g, iffu, =p, and 9, = 9,

5 0 ®p, = ((/“f + 1y _Mlpug’slgz)

5d. 2, Q 0, =(M1Hz,3/93 +9) _Slqgg)

Se. ap=(1-(1-p")*,8”), where o > 0is a real number used as a scalar multiplier.

5f. o =(u*,Y1-(1-97)"), where qis used as a power.

5g. 9° =(9, 1) (Complement of )
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Definition 6. Score and Accuracy function: The score function can be defined as follows:
1+u” —97
Up)=—"FT""

It may be noted that O(g)increases monotonically while uincreases and monotonically
decreases as § increases.
The accuracy function is obtained as

; 0<0(p) <1 (5)

A(p)=p"+97; 0<A(p) <1 (6)
The p, g-QOFNs are compared according to the following rules
i) If O(,) < 0(p,) then o, <,
ii) If O(,) > 0(p,) then @, > o,
iii) If O(0,) = 0(g2,)then
A(p) <Ap,) = @, <0,
A(p) > Ap,) = @, > 0,
A(p) =Ap,)= p, =,
Definition 7. Aggregation
Let, ¢, =(1,,9,); k=12...k is aseries of p, g-QOFNs with corresponding weight values denoted
by, such that o, > O;Zk:mk =1. Then, the definitions of the p, g-QOF weighted averaging (p, g-

k=1

QOFWA) and p, q-QOF weighted geometric (p, g-QOFWG) aggregations are given below.

k
f\’/l—H(l—uf)“"',
k=1

k
P.q=QOF WA, 0,,.0,) = ® 0,0, = (7)

k
P4 = QOFWG(p,,0,,--,) = ® 9, = . (8)
</1—H(1—9;)‘%
k=1

Definition 8. Interaction operations for p, g-QOFNs: The definitions proposed by Riaz et al., [13]
for g-ROFNs can be extended to derive the interactive operations for p, g-QOFNs as follows:

8a. 0, D, = (i’/uf L T R R e R T i )

8b. p, ®p, :(dﬂlp tuy =y =Sy - u 8 + 8 _'91‘1‘92‘])
8c. 2 =({f1-0-wy" {Ja-u"y == =9 )20

8d. 0" = ({1-9) —(1-p" -8 {i-(1-9") );2>0

Definition 9. p, g-QOF interaction weighted averaging: By generalizing the definitions of Riaz et
al., [13], the p, g-QOF interaction weighted averaging (p, g-QOFIWA) and p, g-QOF interaction
weighted geometric averaging (p, 9-QOFIWG) operators can be defined as follows:
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k
P,q—QOFIWA(p,,§,,...40,) = S(Jazlmsps
k
zi/l STa-u")> (9)
s=1
k k
0= -TTa-w o0
s=1 s=1
k
p»q_QOFIWG(@uSOza----SOk) = gsgsmx

f{/l—[ (=8> -[Ta-n!-8DH™, (10)

s=1

k
q I—H(I—SZ)wS
s=1

2.2 The Suggested Model
In this section, the mathematical notion of the Subjective & SITDE integrated weighting approach
used for weighting the criteria and the RAM method used for the ranking of the alternatives is shown.

2.2.1 Subjective approach using mathematical notion of the p, g-QROF sets

Step 1. Computing the subjective weights of the criteria: In this step, subjective weights of the
criteria are calculated following the mathematical notions of the p, g — QOFSs.

Step 1(a). At this stage, experts evaluate each criterion based on their knowledge, experience,
and expertise regarding their impact and importance. Experts consider the linguistic assessment scale
given in Table 1.

Table 1
Linguistic assessment scales and their
corresponding p, g — QOFNs

Level Linguistic description w
9 Extremely Good (EG) 0.9 0.1
8 Very Very Good (VVG) 0.8 0.2
7 Very Good (VG) 0.7 03
6 Medium Good (MG) 06 04
5 Medium (M) 0.5 0.5
4 Medium Bad (MB) 04 06
3 Bad (B) 03 0.7
2 Very Bad (VB) 0.2 0.8
1 Very Very Bad (VVB) 0.1 0.9

Step 1(b). In the second step of subjective weighting, the experts' evaluations are collected and
the p, g — QOFNs corresponding to Table 1 are converted. Then these numbers are aggregated with
the help of Eqs (7) and (8).

Step 1(c). The score function values for p, g — QOFNs combined in the next step are calculated
using Eq. (5).

Step 1(d). The score function values obtained in the last step are normalized, and the subjective
weight values of the criteria are calculated. For this, Eqg. (11) is employed.

204



Journal of Intelligent Decision Making and Granular Computing
Volume 1, Issue 1 (2025) 199-220

. ) (11)
Y. %)

2.2.2 p, q — QOF-SITDE algorithm for identifying the objective weights of the criteria

Step 2. The SITDE approach, developed by Gopisetty and Sama [7], provides a novel framework
for objective weighting in MCDM. Unlike classical methods like Entropy, CRITIC, or MEREC, which rely
on the assumption of symmetric distributions, SITDE incorporates skewness to directly handle
distributional asymmetry.

Step 2(a). Generation of the decision matrix: The process begins with collecting responses from
experts £, (g =1,2,...,r), who evaluate the alternatives 4, (i=1,2,..,m) with respect to various criteria

/35 = (/15,195 ) is the assessment of the ;i alternative subject to j" criterion as opined by the g”

specialist. The experts perform these linguistic appraisals considering linguistic terms given in Table
1.

Step 2(b). Aggregation of the individual ratings using p, q-QOFIWA operation: the aggregation
operations are performed using Eq. (9).

Step 2(c). Deriving the score values for constructing the decision matrix: Eq. (5) is employed to
calculate the score values. Consequently, we derive the crisp decision matrix, which is given as
follows:

¢ C, ... Cj
|
4 Yu o Y Yin
A="" Yor Voo o Vo (12)
4,
yml ymZ A ymn

Step 3. Once the initial decision matrix is obtained, the basic algorithm of the SITDE method is
followed for the determination of objective criterion weights.

Step 3(a). Construct the initial performance matrix, as presented in Eq. (12). This matrix consists
of m alternatives, denoted as 4, (i =1,2,...,m), and n criteria, represented as C, (j=12,....n).

In Eqg. (12), ypq denotes the performance value of the i" alternative against the j* criterion.

Step 3(b). In this step, the normalized performance matrix is created. This process is mandatory
for the criteria to become comparable because they have different qualities. The SITDE approach
considers the criteria according to whether they are cost or benefit criteria, and these normalization
processes are conducted with the help of Eq. (13).

min Yy |z' =12,...m

,ifie B
_ Y (13)

L ,ifie C
max y; |i=1,2,...,m

In Eqg. (13), B symbolizes the beneficial, and C denotes the cost criteria.
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Step 3(c). Calculate the standard deviation of each criterion within the normalized performance
matrix. The standard deviation corresponding to the i*" criterion, denoted by o; is computed as
follows:

S0y
S Y P AL B (14)

Here, the term 7; depicts the arithmetic mean of the normalized values corresponding to criterion
J, and with the help of Eq. (15) are identified as follows:

\’Zm:’”ﬁ
ry=| (15)

rj=
m

Step 3(d). In this step, the coefficients of skewness, indicating the asymmetry in each criterion's
score distribution, is computed for each normalized criterion employing Eq. (16).

5, = m L ”;j_r.i (16)
(m—l)(m—Z);( c, }

J

Step 3(e). Standardize the calculated skewness values. At this stage, the skewness coefficients
obtained from the distribution of each criterion are normalized by applying the transformation
procedure given in Eq. (17).

i, =|((s, 1)+ (Jmin (s,)]+1)) (17)
Step 3(f). The preliminary objective weight values assigned to each criterion are computed.
WOB Is, (18)

J

lei

=
Step 4. The application of multiple MCDM algorithms to determine criterion weights may lead to
slight inconsistencies in the resulting coefficients. These variations primarily arise from the
methodological diversity of the techniques, each relying on distinct computational frameworks and
evaluation logics. To overcome this issue and enhance the robustness of the weighting process, this
study employs a non-linear weight integration-based aggregation operator [14-15]. This approach
consolidates the outcomes of different MCDM methods, thereby ensuring a more coherent, stable,
and representative allocation of criterion weights. By jointly incorporating the insights of multiple
weighting techniques, the proposed operator produces optimized coefficients that provide a more
balanced and objective assessment of criterion importance. Specifically, the weights obtained
through Subjective and SITDE are integrated using the non-linear aggregation formula presented
below:
WSUBI )g (WOBJ )‘P

int __ J
w o =

i n

() (o)

J=1

(19)
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. 13 ¢
Here, w™ denotes the integrated weight of the j* criterion, while (me) and (w@’)

represent the individual weights of the criterion (; as computed via the SITDE and subjective
procedures, respectively. The parameters ¢ and ¢, where &, @ € [0, 1], serve as priority factors,
reflecting the relative emphasis assigned to the SITDE and subjective methodologies within the
integration framework. Eqg. (19) is structured to support decision makers (DMs) in articulating their
relative preference for either weighting procedure through prioritization parameters. For instance,
to reflect a stronger methodological preference for the SITDE than the subjective procedure, the DM
can increase the value of ¢ within the interval [0, 1], amplifying its influence in the final weight
computation. Lastly, it is worth noting that, in generating the initial solution, both prioritization
parameters were assigned a value of 0.5, thereby ensuring equal contribution from the SITDE and
subjective procedures within the integrated weighting structure.

2.2.3 p, g — QOF-RAM algorithm for identifying the ranking performance of the alternatives

Step 5. At this stage, the Root Assessment Method (RAM) approach, a ranking method developed
by Sotoudeh-Anvari [16], is used to determine the relative importance of alternatives and rank them.
There are some main reasons for choosing this method. Firstly, unlike traditional decision-making
approaches, this approach uses a different degree of balance and compensation between cost and
benefit criteria. In addition, the process does not bother to make pairwise comparisons, and
parameter changes do not affect the results. At the same time, the RAM method resists the rank
reversal problem compared to traditional ranking approaches. In addition, this approach was
expanded with the help of p, g — QOF sets in this study, and the method was given the ability to
manage uncertainties, ambiguities, and expert hesitations more effectively.

Step 5(a). The first step of the RAM method is the same as the first step of the SITDE method.
The first decision matrix obtained from the calculations performed in Step 2 by following the
mathematical notion of p, g — QOF sets is used in the same way in this step.

Step 5(b). Apply the linear sum normalization formula given in Eq. (20) to standardize the
decision matrix.

=2 (j=1200m) (20
Zl:yz'/
Step 5(c). The weighted normalized decision matrix is derived through the application of Eq. (21).
int
X r.w.

S=rw (j=1,2,0m) (21)
Step 5(d). The sums of the weighted normalized scores associated with beneficial and non-
beneficial criteria for the i*" alternative are obtained through Egs. (22) and (23).

=X, (22)

s, = 2’%,’ (23)

represents the sum of the weighted normalized values for the

Tij

In the above equations, s

beneficial criteria, while s_, denotes the sum of the weighted normalized values for the non-
beneficial criteria.

Step 5(e). The overall score for each alternative is determined using the aggregation function
below:

RI,=>%2+s,,, (j=1,2,...n) (24)
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Step 5(f). The ranking of alternatives is determined by the magnitude of their R/, values. A higher
RI, value indicates a greater priority for the alternative A:. In other words, alternatives with larger
RI, values are considered superior options.

Before delving further into the details of RAM, it is important to clarify the role of the constant
value “2” in the radicand and index of Formula (4). The sums of the weighted normalized scores for
beneficial criteria (s,,) and cost criteria (s_, ) for each alternative is typically less than one. This arises

because normalization constrains the elements of the decision matrix to the range [0, 1], and these

normalized values are subsequently multiplied by the criteria weights, which are themselves less than

S

one, to produce the weighted normalized scores. As a result, the raw radical expression, *y/s,, , can

yield unreliable or undefined results.
In certain cases, all decision criteria may be cost-type, resulting in s,, =0. To address this, a

constant value of +2 is added to the radicand to ensure a meaningful outcome. Similarly, when all
criteria are benefit-type, s . =0 may be zero. Again, adding the same constant (+2) prevents the
calculation from involving a 0" root, which is mathematically undefined. This adjustment guarantees

that the RAM formula produces distinct and valid results across all scenarios.

3. A Numerical lllustration

In this section, the integrated decision-making model introduced above has been applied to the
decision-making problem related to the determination of advanced technology, which is the top
priority in adopting and integrating into cold chains, and the results obtained have been summarized
and discussed.

3.1 The Preparation Process

Before proceeding to the proposed model's mathematical operations and implementation steps,
a preparation process was designed in which applications such as defining the research problem,
forming the expert board, determining the criteria and alternatives, and collecting linguistic data
related to them were carried out.

3.1.1 Problem description

This study aims to identify advanced technologies from Industry 4.0 (loT sensor systems;
blockchain-based traceability platforms; cloud-based management software; Al/ML-powered
forecasting and optimization tools) as a multi-criteria, ambiguous, and expert-based decision
problem that should be adopted and integrated into business processes as a result of operational,
environmental, regulatory, and stakeholder-oriented multi-criteria-based evaluation. The decision
problem includes the following components: (i) multiple performance metrics of advanced
technologies (cost of installation, data security, traceability, ease of use, integration potential, energy
consumption, system reliability, compliance with standards, scalability, environmental impact,
stakeholder acceptance), (ii) linguistic and hesitant evaluations of decision makers, (iii) contradictions
between criteria and skewness of distributions, and (iv) parametric modeling of uncertainty.

The solution objective is to rank the alternatives by considering these structural uncertainties and
contradictions, and to provide a transparent technology selection guide that can be applied at the
enterprise level. For this purpose, the study was based on uncertainty-based assessment expressed
with p, g-Quasirung Orthopair Fuzzy Sets; non-linear integration of subjective (expert linguistic) and
SITDE weighting approaches; and RAM-based sequencing.
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3.1.2 Construction of the Experts Panel

A committee of experts was formed to reflect the multidimensional structure of the study's
research problem. In this context, people with expertise in logistics, information technologies, food
safety, and sustainability were identified, and a candidate pool was created. Nine candidates were
selected, and the four experts who best met the determined criteria preferred participation on the
board. The candidates' academic qualifications, professional experience, field suitability, and
multifaceted perspectives were considered during the selection process. Regarding scholarly
competence, having at least a master's degree and at least ten years of professional experience were
among the basic conditions. In addition, the priority evaluation factors were that the candidates
specialized in a field directly related to the criterion set of the study and had both academic and
sectoral experience.

As a result of this process, U1 (Logistics and Supply Chain, 16 years of experience, PhD) for its
contributions to the integration of logistics processes and cost management; U2 (Information and
Communication Technologies, 12 years of experience, Master's Degree) thanks to its expertise in
digital infrastructures, data security and blockchain technologies; U3 (Food Safety and Cold Storage,
18 years of experience, PhD) due to its knowledge in quality management, cold storage and
traceability of food products; U4 (Sustainability and Industry 4.0, 10 years of experience, PhD) was
included in the board with his studies on environmental impact, energy consumption and Industry
4.0 perspective. Thus, the board is structured to cover technological, operational, food safety, and
sustainability dimensions in a balanced manner.

3.1.3 Identification of the Criteria and Alternatives

The criteria and alternatives used in this study were determined systematically to holistically
evaluate the selection process of advanced technologies in cold chain logistics. First, a literature
review was conducted, sectoral reports were examined, and expert opinions were obtained. Since
operational, environmental, and regulatory dimensions come to the fore due to the nature of the
cold chain, a set of criteria has been created to reflect this multidimensionality. In this context,
Installation Cost is an economic factor that directly affects the applicability of technologies, since
Data Security is one of the most critical risk areas of digital solutions; Traceability Capability, product
safety, and regulation compliance to ensure compliance; Ease of Use has been chosen to increase
the effectiveness of the application processes. Integration Potential represents the ability to adapt
with existing supply chain infrastructures; Energy Consumption and Environmental Impact criteria
have enabled sustainability-oriented evaluation. System Reliability ensures the sustainability of
uninterrupted operations; Compliance and Standards ensure compliance with regulatory
frameworks; Flexibility and Scalability are the ability of technologies to adapt to the future;
Customer/Supplier Acceptance is included to measure stakeholders' approach to technology and
willingness to adopt it (Table 2).

Table 2
The identified criteria set
Code  Criteria Code Criteria
C1 Installation Cost Cc7 System Reliability
C2 Data Security c8 Compatibility and Standards
Cc3 Traceability Cc9 Flexibility and Scalability
c4 Ease of Use c10 Environmental Impact

(65) Integration Potential C11 Customer/Supplier Acceptance
C6 Energy Consumption
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In selecting alternatives (Table 3), technologies that stand out in cold chain logistics today and
have a high potential for transformation were considered. 0T Sensor Systems are essential as they
allow real-time monitoring of critical parameters such as temperature and humidity. Blockchain
platforms have been considered to provide transparent and reliable traceability of products
throughout the supply chain. Cloud Software has been among the alternatives due to its ease of data
storage, sharing, and management, and its potential to increase operational efficiency. Finally, Al/ML
Solutions were evaluated for their contribution to intelligent decision-making processes, including
demand forecasting, routing optimization, and risk management.

Table 3
The determined advanced
technologies for cold chains

Code Criteria
Al loT Sensor Systems
A2 Blockchain Platforms
A3 Cloud Software
A4 Al/ML Solutions

The criteria and alternatives determined within this framework reflect the scope of the research
problem holistically, allowing the study to analyze technologies comparatively with a multi-criteria
decision-making approach.

3.1.4 Collecting p, g — QOF Data regarding the Criteria and Alternatives

The study collected expert opinions on evaluating criteria and alternatives in two separate stages.
In the first stage, experts were brought together to determine the importance of the criteria used in
the research problem. In this process, each expert evaluated the relative importance of the criteria
in the context of the situation through the statements in the linguistic assessment scale in Table 1.
Thus, the importance levels of the criteria were obtained based on the experts' linguistic preferences.

In the second stage, the performance of the alternatives against the determined criteria was
evaluated. The experts expressed the level at which each alternative meets each criterion, again
based on the linguistic terms given in Table 1. In this way, the strengths and weaknesses of the other
options were revealed through linguistic expressions, and the evaluations obtained were then
converted into numerical form and included in the analysis process. In both stages, the experts'
evaluations were made by considering the linguistic scales defined in Table 1, so that both the
weights of the criteria and the performance values of the alternatives were obtained consistently
and comparably.

3.2 Calculation of the Weights of the Criteria

At this stage, in order to determine the weights of the Criteria, first the subjective criterion
weights were calculated by using the mathematical applications of the p, g — QOF sets, then the
objective weights of the Criteria were calculated by following the basic algorithm of the p, g — QOF
based SITDE approach, and then the final criterion weight values were obtained by combining these
subjective and objective weights.

3.2 Calculation of the subjective weights of the criteria

At this stage, in order to determine the weights of the Criteria, first the subjective criterion
weights were calculated by using the mathematical applications of the p, g — QOF sets, then the
objective weights of the Criteria were calculated by following the basic algorithm of the p, g — QOF
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based SITDE approach, and then the final criterion weight values were obtained by combining these
subjective and objective weights.

Step 1. The subjective weights of the criteria were calculated following the mathematical
definitions of p, g — QOFSs. Accordingly, the experts evaluated each criterion based on their
knowledge, experience, and expertise about the impact and importance of the criteria. The linguistic
scale given in Table 1 was considered in the evaluations. Table 4 shows the linguistic assessments of
the experts.

Table 4
Linguistic assessment of the experts
Codes Criteria DM1 DM2 DM3 DM4

c1 Installation Cost VG M MG MG
C2 Data Security MG EG VVG VG
C3 Traceability VVG VVG EG VWG
ca Ease of Use MG VG MG MG
Cc5 Integration Potential VVG EG VG VWG
ceé Energy Consumption VG MG MG VWG
c7 System Reliability EG VVG VVG VG
C8 Compatibility and Standards VG VG EG VWG
C9 Flexibility and Scalability EG VVG VG VG
C10 Environmental Impact MG M VVG EG
Cl1 Customer/Supplier Acceptance VVG VG VG WG

Then, in the second stage of subjective weighting, the experts' evaluations were collected and
converted into p, g — QOFN values corresponding to Table 1. Later, these values were concatenated
with the help of Egs. (7) and (8). The score function values of the combined p, g — QOFNs were
calculated using Eq. (5). The score function values obtained in the last step were normalized, and the
subjective weights of the criteria were calculated. Eq. (11) was used for this operation. As a result,
the subjective weight values of the criteria were reached by systematically following the steps. Table
5 shows the combined p, g — QOFNs, score function values, and final weights of the criteria obtained
after the calculations.

Table 5

The final results of the computations

Codes Criteria u ) Score Val. Weight
c1 Installation Cost 0.6118 0.6249 0.4192 0.0824
c2 Data Security 0.7879 0.7409 0.4701 0.0924
c3 Traceability 0.8333 0.7801 0.4851 0.0953
ca Ease of Use 0.6299 0.6251 0.4296 0.0844
c5 Integration Potential 0.8174 0.7648 0.4807 0.0944
Cé6 Energy Consumption 0.6936 0.6627 0.4473 0.0879
c7 System Reliability 0.8174 0.7648 0.4807 0.0944
c8 Compatibility and Standards 0.7996 0.7481 0.4758 0.0935
Cc9 Flexibility and Scalability 0.7996 0.7481 0.4758 0.0935
C10 Environmental Impact 0.7670 0.7334 0.4566 0.0897
Cl1 Customer/Supplier Acceptance 0.7570 0.7043 0.4689 0.0921

3.3 Calculation of the objective weights of the criteria

At this stage, the objective weights of the criteria were calculated by following the basic
algorithm of the p, g — QOF-based SITDE approach. The results obtained are shown below.

Step 2. At this stage, the experts were asked to evaluate the performance of the alternatives
against various criteria, and the experts made their evaluations using the linguistic terms given in
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Table 1. Then, individual evaluations were aggregated with the p, g—QOFIWA process. This process
was carried out with the help of Eq. (9). Score values were obtained to create the decision matrix. As
a result of these score values calculated using Eq. (5), the first decision matrix shown in Table 6 was
obtained.

Table 6
The initial decision matrix
Codes Al A2 A3 A4

c1 0.6363 0.4375 0.6037 0.5545
c2 0.6574 0.8595 0.7119 0.7360
c3 0.8073 0.8595 0.7119 0.7119
ca 0.6574 0.5280 0.7744 0.6037
c5 0.6858 0.6858 0.8354 0.7360
c6 0.6574 0.5337 0.6363 0.5545
c7 0.7360 0.6574 0.7360 0.6265
c8 0.7314 0.7383 0.7119 0.6858
c9 0.7360 0.6265 0.7538 0.8354
C10 0.6889 0.7146 0.6141 0.7146
c11 0.7119 0.6037 0.7360 0.6574

For example, the element value in cell C1-Al is calculated as follows.

[

e 1_[((0.83)(0.63)(0.73)(0.73))“”]; -

(((0.83)(0.63)(0.73)(0.73))0‘27 - [((0.83 -0.2%)(06°~0.4%)(0.7° ~0.3%) 0.7° —0.32))0'25 j;

0(9) a1-c1 = 2 =0.6363

Step 3. Once the initial decision matrix was obtained, the basic algorithm of the SITDE method
was applied to determine the objective weights of the criteria. First, the performance matrix was
created as shown in Eq. (12). This matrix consisted of m alternatives and n criteria. Here, each matrix
element shows the performance value of alternative i against criterion j. Then, with the help of Eq.
(13), the normalized performance matrix was obtained (Table 7).

Table 7
The normalized decision matrix
Codes Al A2 A3 Al

C1 1.0000 0.6876 0.9488 0.8715
c2 1.0000 0.7648 0.9234 0.8931
c3 0.8818 0.8283 1.0000 1.0000
c4 0.8032 1.0000 0.6818 0.8746
C5 1.0000 1.0000 0.8208 0.9318
Cé 1.0000 0.8120 0.9679 0.8435
c7 0.8512 0.9531 0.8512 1.0000
c8 0.9377 0.9288 0.9633 1.0000
c9 0.8512 1.0000 0.8311 0.7499
Cc10 0.8915 0.8594 1.0000 0.8594
c11 0.8480 1.0000 0.8202 0.9184

Then, the standard deviation for each criterion was calculated using Eqg. (14). Immediately
afterwards, the arithmetic mean of each criterion was determined with the help of Eq. (15). Table 8
shows the standard deviation and arithmetic mean values for the criteria.
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Table 8
o, and r; values for the criteria
C1 c2 C3 C4 cs C6 c7 c8 c9 €10 c11
o 0.1369 0.0979 0.0865 0.1331 0.0846 0.0921 0.0748 0.0319 0.1043  0.0667 0.0803
r 0.8770  0.8953 09275 0.8399 0.9381 0.9059 0.9139 09574 0.8581  0.9026 0.8966

In the following substep, the coefficients of skewness, indicating the asymmetry in each
criterion's score distribution, was computed for each normalized criterion employing Eq. (16). Then,
skewness values were normalized using Eq. (17). In the last step, criterion weights were determined
with the help of Eq. (18) using these values. Table 9 shows the results obtained.

Table 9
Final weight values of the criteria
C1 C2 C3 C4 C5 c6 c7 3 C9 C10 C11
Al 0.7267  1.2205 -0.1475 -0.0209 0.3913 1.0698 -0.5867 -0.2379 -0.0003 -0.0046  -0.2224
A2 -2.6494 -2.3660 -1.5108 1.7385  0.3913 -1.0616 0.1435 -0.7209 2.5223  -0.2714  2.1296
A3 0.1445 0.0234 0.5883 -1.6748 -2.6694 0.3068 -0.5867 0.0061 -0.0172 3.1175 -0.8604
A4 -0.0001 0.0000 05883 0.0177 -0.0004 -0.3104 1.5239  2.3724 -1.1162 -0.2714  0.0198
S; -1.1855 -0.7481 -0.3212 0.0403 -1.2582 0.0031 03293 0.9465 0.9257 17134  0.7111
Is, 0.7288 09203 1.0774 11935 0.6931 1.1821 1.2775 14362 1.4312 1.6037  1.3786
w? 00564 00712 00834 00924 00536 00915 00989 01111 01108 01241  0.1067

J

Step 4. Then, subjective and objective criterion weights were combined using equation 19, and {
and @ parameters were used for this, and both were taken as 0.5 in this study (Table 10).

Table 10
Subjective, objective, and integrated criteria weights
c1 2 c3 c4 c5 c6 c7 cs8 c9 C10 c11
b
w™ 0.0824 0.0924 0.0953 0.0844 0.0944 0.0879 0.0944 0.0935 0.0935 0.0897  0.0921
J
.
w’ 0.0564 0.0712 0.0834 0.0924 0.0536 0.0915 0.0989 0.1111 0.1108 0.1241  0.1067
J
w 0.0687 0.0817 0.0898 0.0890 0.0717 0.0903 0.0974 0.1027 0.1025 0.1063  0.0999
J
Rank 11 9 7 8 10 6 5 2 3 1 4

According to the results, C10 Environmental Impact has been determined as the most critical and
influential criterion for selecting and prioritizing advanced technologies for cold chains. This is
followed by C8 Compliance and Standards and C9 Flexibility and Scalability criteria, respectively. The
rest are listed as C11 Customer/Supplier Acceptance > C7 System Reliability > C6 Energy Consumption
> C3 Traceability Capability > C4 Ease of Use > C2 Data Security > C5 Integration Potential > C1
Installation Cost.

3.3 Identification of the Advanced Technology Alternatives

Step 5. At this stage, the relative importance of the alternatives was determined, and their ranks
were established using the Root Assessment Method (RAM) approach, a ranking method developed
by Sotoudeh-Anvari [16]. The first step of the RAM method was the same as the first step of the SITDE
method. In the second step, the first decision matrix obtained following the mathematical structure
of p,g—QOF sets was used similarly in this stage.
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Then, the linear sum normalization formula given in Eq. (20) was applied to standardize the first
decision matrix. Table 11 shows the normalized decision matrix with normalized values.

Table 11
The normalized decision matrix
Codes Al A2 A3 A4

c1 0.0000 1.0000 0.1640 0.4114
c2 0.0000 1.0000 0.2700 0.3890
c3 0.6464 1.0000 0.0000 0.0000
ca 0.5249 0.0000 1.0000 0.3072
c5 0.0000 0.0000 1.0000 0.3356
c6 0.0000 1.0000 0.1705 0.8321
c7 1.0000 0.2818 1.0000 0.0000
c8 0.8675 1.0000 0.4977 0.0000
c9 0.5241 0.0000 0.6092 1.0000
C10 0.7438 1.0000 0.0000 1.0000
c11 0.8180 0.0000 1.0000 0.4056

The weighted normalized decision matrix was obtained using Eq. (21) in the next step.
Afterwards, the sums of the weighted normalized scores associated with the benefit and cost criteria
of the alternatives were calculated using Egs. (22) and (23). The integration function given in Eq. (24)
determined the total score for each alternative. The order of the options was made according to the
magnitude of the values obtained. A higher value indicates that the relevant alternative is more
prioritized. Therefore, alternatives with great value have been considered superior options. Table 12
shows the results obtained regarding the ranking of the alternatives.

Table 12

The weighted normalized matrix and the obtained

results

Codes Al A2 A3 A4
C1 0.0000 1.0000 0.1640 0.4114
C2 0.0000 1.0000 0.2700 0.3890
Cc3 0.6464 1.0000 0.0000 0.0000
c4 0.5249 0.0000 1.0000 0.3072
C5 0.0000 0.0000 1.0000 0.3356
6 0.0000 1.0000 0.1705 0.8321
c7 1.0000 0.2818 1.0000 0.0000
c8 0.8675 1.0000 0.4977 0.0000
c9 0.5241 0.0000 0.6092 1.0000
C10 0.7438 1.0000 0.0000 1.0000
C11 0.8180 0.0000 1.0000 0.4056
Su 0.5057 0.4080 0.4935 0.3325
S.i 0.0000 0.1590 0.0267 0.1034
Rl; 1.5829 1.5024 1.5696 1.4958
Rank 1 3 2 4

The ranking results obtained show that the most prioritized advanced technology that should be
prioritized is Al loT Sensor Systems, which is consistent with prior research emphasizing the role of
wireless sensor-based loT architectures in ensuring product safety and compliance in cold chains.
This was followed by A3 Cloud Software, A2 Blockchain Platforms ranked third, and A4 Al/ML
Solutions ranked last.
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4. Robustness and Validity Check

A comprehensive soundness check was carried out at this stage. For this, firstly, the effect of the
change in criterion weights on the ranking results was examined. Then, the values of the § and ¢
parameters were changed, and their impact on the results was observed. In the third stage, the
resistance of the proposed model to the rank reversal problem was tested. In the first stage, the
criteria weights were changed in 110 scenarios following the basic algorithm proposed by Gorgiin et
al. [17]. Varying weight values in each scenario were included in the evaluation process, and the
effect of these different weight values on the ranking results was observed. Figure 1 shows the impact
of the changed weight values on the ranking results in 110 scenarios.

— ] —] o— —

o
SC109 scl 5C3
SC107 770 T 5Ch
5

5C105

59 grs7 So55 SCS3

Fig. 1. New ranking results for 110 scenarios

As shown in Figure 1, when the weight values of the most effective criteria were changed by 80%
or more, some changes were observed in the ranking results for the alternatives. On the other hand,
it is not obvious that the weight value of a criterion decreases to this extent in real life conditions.
While the ranking results of A1 and A3 changed in only two scenarios, the ranking results of A2 and
A4 differed in 3 scenarios. In addition, the average similarity rate is calculated to be 97.7%, which is
quite high if bird. These findings show that the proposed model is maximally resistant to changes in
criterion weights.

In the second stage, the values of € and ¢ parameters were changed from Oto 1, and ten scenarios
were prepared for this. In each scenario where the values of these parameters were changed, the
application of the sorting method used in this study was repeated. Figure 2 shows the results of this
analysis.
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Fig. 2. Ranking results for ten scenarios

As can be seen in Figure 2, when the parameter values were changed, there was no change in the
ranking results for the alternatives.

In the last stage, to measure the resistance of the proposed model to the rank reversal problem,
the worst and next alternative in each scenario was extracted [18], the ranking methodology was
applied again for the rest and the results obtained were examined. Table 13 presents the results of
the rank reversal test.

Table 13
The results of the rank reversal test
Codes Scenarios
Original Al >A3>A2> A4
SC2 Al >A3 >A2
SC2 Al >A3
SC3 Al

As shown in Table 13, although the worst alternative was extracted in each scenario, the ranking
result did not change. This finding proves that the proposed model is resistant to the rank reversal
problem.

5. Results

The findings of this study provide several noteworthy insights into the adoption of advanced
technologies in cold chain logistics. Based on the integrated weighting approach, the most critical
evaluation criterion was identified as environmental impact (C10), followed by compliance with
standards (C8) and flexibility and scalability (C9). These results indicate that decision-makers in cold
chain operations place greater emphasis on sustainability, regulatory alighnment, and adaptability to
future demands, rather than solely focusing on cost efficiency or ease of use. Such prioritization
reflects the increasing pressures of environmental regulations, corporate sustainability strategies,
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and the dynamic nature of logistics infrastructures. In contrast, installation cost (C1) and integration
potential (C5) were ranked lowest, suggesting that while economic considerations remain relevant,
they are no longer the dominant drivers of technology adoption decisions in this sector.

Regarding technological alternatives, the results of the RAM method show that loT-based sensor
systems (A1) emerged as the most suitable solution for integration into cold chain business models.
This finding underscores the pivotal role of real-time monitoring of temperature, humidity, and other
critical parameters in ensuring product quality [19] and compliance. loT sensors not only provide
operational transparency but also directly support sustainability objectives by reducing spoilage and
waste [20]. Cloud-based software (A3) ranked second, highlighting the importance of digital
platforms for centralized data storage, accessibility, and process optimization. Meanwhile,
blockchain platforms (A2) secured the third rank, indicating their growing but still secondary
relevance compared to real-time monitoring tools. Finally, Al/ML solutions (A4), while recognized for
their potential in forecasting and optimization, were ranked lowest—likely due to their higher
complexity, implementation challenges, and the need for extensive data maturity.

The outcomes offer significant implications for both practitioners and policymakers:

Logistics firms should prioritize loT sensor deployment as the foundational step in digital
transformation. Once real-time monitoring and traceability are achieved, subsequent integration of
cloud platforms and blockchain can further strengthen supply chain transparency and compliance.

The predominance of environmental criteria suggests that investments in technology are no
longer just about efficiency but also about meeting sustainability goals. This aligns with global green
policies, such as carbon neutrality commitments and waste reduction targets. The high ranking of
compliance and standards highlights the need for policymakers to design clearer guidelines and
incentive mechanisms. Governments can accelerate technology adoption by offering tax incentives
or subsidies for firms adopting environmentally friendly and regulatory-compliant technologies.

Customer and supplier acceptance ranked relatively high (C11), signaling that successful adoption
requires not only technological readiness but also stakeholder trust and willingness. Firms should,
therefore, implement awareness and training programs to ensure smoother adoption.

This study reveals that the cold chain industry is undergoing a paradigm shift: firms increasingly
perceive sustainability and compliance as sources of competitive advantage rather than constraints.
Additionally, the relatively lower ranking of cost-related factors shows a broader acceptance that
long-term benefits—such as reduced spoilage, compliance with green regulations, and enhanced
reputation—outweigh short-term financial burdens. Importantly, the robustness analysis confirmed
that the proposed framework maintains stable rankings even under significant changes in weights,
ensuring reliability for real-world decision-making.

This study provides several methodological and theoretical innovations: By combining subjective
(expert-driven) and objective (SITDE) weighting with RAM, the model bridges the gap between expert
judgment and systematic data-driven approaches. The use of p, g-Quasirung Orthopair Fuzzy Sets
enhances the capacity to model uncertainty, vagueness, and decision-maker hesitation more
effectively than classical fuzzy sets. Unlike previous studies that focus narrowly on cost or technical
performance, this framework incorporates sustainability, regulatory, and stakeholder dimensions,
providing a comprehensive decision-making tool. The results remained highly stable across multiple
scenarios, demonstrating the model’s resistance to rank reversal and its suitability for complex real-
world applications. Beyond theoretical contributions, the framework offers an actionable roadmap
for logistics companies, policymakers, and supply chain managers seeking structured guidance in
technology adoption.

In summary, the study demonstrates that loT-based monitoring systems are the cornerstone of
sustainable and resilient cold chain management, while complementary technologies such as cloud
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platforms, blockchain, and Al/ML play supporting but progressively important roles. By integrating
advanced MCDM techniques, the proposed framework ensures a balanced and reliable evaluation
that reflects the complexity of real-world logistics systems.

Ultimately, the findings underscore that the future of cold chain logistics lies in green,
transparent, and digitally enabled systems. Firms that prioritize sustainability and compliance-driven
technology adoption will not only enhance their operational efficiency but also secure long-term
resilience in an increasingly competitive and regulated market environment. The methodological
rigor and robustness of the proposed approach ensure that it can serve as a replicable template for
decision-making in other domains of logistics and supply chain management, marking both a
theoretical advancement and a practical contribution to the field.

6. Discussion

The findings of this research reveal a critical paradigm shift in the adoption of cold chain
technology. In contrast to earlier studies, which, for example, Liang et al., [3] and East et al., [4]
virtually solely emphasized economic or technical efficiency drivers, our outcomes demonstrate that
today, sustainability and compliance drivers dominate decision-making. This aligns with subsequent
research [4, 19] that also placed particular stress upon environmental pressures and regulatory
regimes as deciding forces of supply chain digitalization. Our contribution extends these perspectives
by combining both subjective expert information and objective distribution-based weighting (SITDE)
in a formal fashion, guided through powerful sequencing with RAM.

Compared with well-known MCDM approaches such as AHP—TOPSIS or fuzzy DEMATEL, the
proposed framework more accurately captures uncertainty, asymmetry, and expert hesitance. For
instance, earlier research based on entropy- or CRITIC-based weighting often made symmetric
distribution assumptions and could thus not reflect extreme evaluations from heterogeneous
experts. Our SITDE-p,g-QROFS overcomes this limitation directly by offering a more robust and
versatile modeling framework.

The role of loT-based sensing systems as the most relevant technology is underpinned by existing
literature [19] that cited the inherent significance of real-time monitoring. Nonetheless, our model
also captures that cloud software is more relevant than blockchain use in current cold chain contexts.
This departure from some past research highlights the fact that while blockchain is promising, its
adoption is also hindered by integration complexity and high implementation cost.

Managerially, the results provide an adoption blueprint in a step-by-step manner:

i.  Begin with loT deployment for traceability and monitoring,

ii.  Deploy cloud platforms for centralized data and operational effectiveness,
iii.  Deploy blockchain for compliance and transparency,
iv.  Incrementally explore Al/ML as data maturity and expertise develop.

This approach is especially applicable for companies in emerging economies, where limitations in
resources and low digital maturity can hinder the parallel adoption at scale of all Industry 4.0
technologies.

7. Conclusion

This study developed and applied an integrated multi-criteria decision-making framework based
on p, g-Quasirung Orthopair Fuzzy Sets, SITDE, and RAM to evaluate and prioritize advanced
technology alternatives for cold chain logistics. The findings revealed that environmental impact,
compliance with standards, and flexibility and scalability are the most influential criteria shaping
technology adoption decisions. This reflects the growing importance of sustainability, regulatory
alignment, and adaptability in an era where logistics operations face increasing pressures from green
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policies and dynamic supply chain demands. Among the alternatives, loT-based sensor systems were
identified as the most suitable technology, followed by cloud-based management software and
blockchain platforms, while Al/ML solutions ranked lowest due to implementation challenges and
data maturity requirements.

The study offers important managerial implications by demonstrating that logistics firms should
strategically prioritize loT-based solutions as a foundation for digital transformation and
subsequently integrate cloud and blockchain platforms to build more transparent, sustainable, and
resilient supply chains. At the policy level, the results highlight the need for supportive regulatory
frameworks, incentives, and clear compliance standards to accelerate the adoption of
environmentally friendly and innovative technologies. The framework also underscores the
importance of stakeholder acceptance, signaling that successful adoption requires not only technical
readiness but also social and organizational alignment.

From a theoretical and methodological perspective, the proposed framework contributes to the
literature by integrating subjective and objective weighting methods, employing a novel uncertainty-
handling mechanism, and ensuring robust and stable results across multiple scenarios. It not only
advances academic discussions on decision-making in logistics but also provides a practical and
replicable roadmap for real-world applications.

Despite these contributions, the study is not without limitations. The evaluation was based on
the judgments of a limited number of experts, which may restrict the generalizability of the results.
Moreover, the analysis focused on a specific set of technologies and criteria, which, although
comprehensive, may not fully capture all potential technological innovations or context-specific
considerations in diverse supply chains.

Future research can address these limitations by expanding the expert pool to include a wider
range of stakeholders from different regions and industries, thereby enhancing the robustness and
representativeness of the findings. Additionally, subsequent studies could explore dynamic decision-
making models that account for the evolving nature of technological adoption over time, integrating
longitudinal data and scenario-based simulations. Another promising avenue lies in testing the
proposed framework across different sectors of logistics and supply chain management, such as last-
mile delivery, maritime transport, or warehousing, to validate its adaptability and scalability.
Furthermore, combining this model with real-world performance data and life-cycle assessments
could provide deeper insights into the environmental and economic impacts of emerging
technologies.

In conclusion, this research provides both theoretical advancements and practical guidance for
decision-makers navigating the complexities of technology adoption in cold chain logistics. By
emphasizing sustainability, compliance, and adaptability, and by offering a rigorous yet flexible
decision-making tool, the study lays the foundation for further exploration and innovation in building
smarter, greener, and more resilient supply chains for the future.
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