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The fact that operations and business models in cold chain logistics have 
become more complex than in the past due to digital transformation, 
disruptive developments in the industry 4.0 process, and increasing 
pressures in the context of sustainability and green policies necessitates the 
use of advanced technologies to ensure efficiency, transparency, and 
sustainability. This study developed a multi-criteria decision-making-based 
framework to evaluate the adoption of new and advanced technologies 
related to cold chain logistics. In this context, four alternative solutions—IoT-
based sensor systems, blockchain-based traceability platforms, cloud-based 
management software, and AI/machine learning-supported forecasting and 
optimization tools—were examined within the framework of eleven criteria.    
These criteria include installation cost, data security, traceability capability, 
ease of use, integration potential, energy consumption, system reliability, 
compliance with standards, scalability, environmental impact, and 
stakeholder acceptance. While the findings show that C10 Environmental 
Impact, C8 Compliance and Standards, and C9 Flexibility and Scalability 
criteria are the prominent criteria for determining the most appropriate 
technology, A1 IoT Sensor Systems have been chosen as the top priority 
alternative that should be adopted and integrated into business models. 
Ultimately, a thorough robustness check was conducted to verify the validity 
and reliability of the model proposed in this study. 

 
Keywords:  
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1. Introduction 

Cold chain operations are one of the most critical components of modern supply chains and 
logistics processes to ensure food safety and protect pharmaceuticals, medical supplies, and sensitive 
products against adverse situations such as spoilage and waste. In this scope, insufficient food 
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transport and warehousing operations, interruptions in the cold chain [1], unsuccessful planning 
processes, and mistakes of the last users are the leading reasons for the food lost and waste (FLW) 
[2]  Effective and efficient structuring and management of cold chains guarantees the quality and 
safety of food products and greatly influences and shapes cost optimization, environmental impact 
on operations, and customer satisfaction [3]. Each perishable product has a certain optimal storage 
temperature; whether it is too high or too low will affect its safety and quality [4]. Especially in food 
and pharmaceutical logistics, changes and fluctuations in ambient temperatures or operational errors 
can cause millions of dollars in losses for businesses and their stakeholders. In that regard, the correct 
choice, prioritization, and integration of technological applications into the system have become a 
critical and strategic necessity regarding operational efficiency and effectiveness, and their 
environmental and social impacts. 

Depending on the disruptive technologies emerging in the Industry 4.0 process and the 
increasingly prominent concept of digital transformation, IoT-based sensor systems, blockchain 
solutions, cloud-based management software, and artificial intelligence/machine learning-supported 
optimization tools have become more prominent as advanced and innovative technologies that can 
be used in cold chain operations. The adoption of these technologies and their integration into the 
business models of logistics businesses conducting cold chain operations make it necessary to 
consider multidimensional criteria such as cost, safety, sustainability, ease of integration, and 
stakeholder acceptance, as well as the technical performance of these technologies. In this direction, 
determining and prioritizing the most appropriate technology is a highly complex decision-making 
problem considering the non-linear relationships between the criteria, the multidimensional, 
contradictory and complex nature of the criteria, as well as the uncertainties, ambiguities and 
decision-maker hesitations inherent like the cold chain logistics industry, and to solve this problem 
reasonably, in addition to addressing the criteria in a balanced and reasonable manner,  A strong and 
reliable decision-making framework is needed to enable effective modeling and management of 
uncertainties. 

Although technology selection and adoption have been discussed from different perspectives in 
the literature on cold chain applications, the studies have primarily focused on certain factors and 
discussed the benefits of technologies to be used in cold chain applications with their qualitative 
dimensions. Decision-making tools and models are mostly neglected in the literature, and there is no 
adequate relationship and integration between expert evaluations and systematic and data-based 
approaches. Due to these research gaps in literature, decision-makers often make choices based on 
their intuitive and limited knowledge, leading to erroneous investment decisions and increased 
operational costs and uncertainties. 

This study develops an integrated decision-making model consisting of Subjective & SITDE and 
RAM methods with the help of p, q-Quasirung Orthopair Fuzzy Sets (p, q-QROFS) to fill these research 
gaps and eliminate theoretical evaluation inadequacies. By applying this model, advanced technology 
alternatives that can be used in cold chain operations, such as IoT sensor systems, blockchain-based 
platforms, cloud-based software, and AI/ML solutions, were analyzed in the light of the evaluations 
made by four professionals who are experts in the fields of logistics, informatics, food safety and 
sustainability, taking into account eleven basic criteria. 

The decision-making model used in this study provides significant advantages. Foremost, p, q-
Quasirung Orthopair Fuzzy Sets capture and process uncertainty and ambiguity much more 
effectively than traditional fuzzy sets [5]. Recognizing the dynamic nature of decision-makers' criteria, 
this framework enhances the applicability of decision-making processes by analyzing point values 
tied to different parameters, enabling the realistic modeling of decision scenarios and ensuring that 
the model effectively reflects the complexities involved in real-world decision-making processes [5]. 
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At the same time, the ability to adjust the parameters in the p and q aggregation operators by 
decision-makers in line with the specific requirements and preferences of the scenario injects a high 
level of adaptability into the decision process, enhancing its applicability to a wide range of real-world 
situations that consider different degrees of membership and non-membership [6]. 

Subjectively process linguistic evaluations of decision-makers using mathematical operations of 
the fuzzy set preferred in this study to determine criterion weightings, which are integrated with the 
SITDE method, an objective weighting approach developed by Gopisetty and Sama [7]. This approach 
integrates subjective and objective information, resulting in more balanced results. The RAM 
method, which was ultimately chosen for ordering alternatives, is highly understandable, practical, 
and flexible, as well as a compelling and consistent sorting approach. Based on these advantages, the 
proposed p, q-QROF Subjective – SITDE & RAM integrated methodological framework stands out as 
a potent and robust decision-making tool compared to traditional decision-making approaches, as it 
digitizes expert opinions in a rational context by considering cost and benefit criteria together, and 
allows multidimensional, transparent, flexible, and reproducible analyses. 

The innovations provided by this study can be summarized in three dimensions: (i) it combines 
the criteria that are discussed in the literature in a holistic structure, (ii) it reduces subjectivity by 
integrating expert opinions with a strong mathematical infrastructure, (iii) technologies are evaluated 
not only in terms of their operational benefits but also in terms of environmental and stakeholder 
dimensions, and (iv) p, q-QROFS-based Subjective & SITDE and RAM methods are proposed. Thus, 
the study both provides a methodological and contextual contribution to the academic literature and 
develops an applicable roadmap for the strategic decision processes of enterprises. 

The rest of the paper is structured as follows: Section 2 describes the methodological framework 
used and the theoretical background of the MCDM approach. Section 3, the research design, criteria, 
alternatives, and the characteristics of the expert group are introduced in detail. Section 4 presents 
the findings regarding the implementation of the proposed model and discusses the results. Section 
5 discussion 6 concludes the study, discusses theoretical and practical contributions, and indicates 
suggestions for future research. 
 
2. Methodology  

This study proposes a Subjective – SITDE & RAM integrated decision-making model based on p, 
q-QROF sets to eliminate the research gaps and theoretical evaluation deficiencies discussed above. 
The proposed model is designed to capture the multidimensional and complex nature of decision-
makers' evaluations in the context of modeling and managing uncertainties, ambiguities, expert 
hesitations, and evaluating and prioritizing innovative technologies that have the potential to be used 
in cold supply chains. Beyond decision-making approaches that are often one-dimensional and have 
methodological deficiencies, it offers a holistic, flexible, and robust structure that can reflect the 
complexities of decision-making in real-world conditions within supply chain and logistics 
management. By integrating subjective and objective weighting approaches, sequencing 
alternatives, and modeling highly complex uncertainties, the decision-making framework offers 
theoretical contributions and improves practical and reliable applicability for decision-makers and 
practitioners.  

 
2.1 Preliminary information on p, q – QOFS 

This section illustrates the evolution of p, q – QOFS, summarizing its key definitions and 
characteristics. Let,   is the universe of discourse containing the elements of the p, q – QOF sets. 

Definition 1. Intuitionistic Fuzzy Set (IFS): An IFS can be described as follows [8]. 

( ) ( ) , , :
I I

I x x x x=                             (1) 
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The membership and non-membership degrees, such as ( )  0,1
I

x → and ( )  0,1
I

x → are 

affixed with the following condition: ( ) ( )0 1;
I I

x x x  +     

Definition 2. Pythagorean Fuzzy Set (PFS): A PFS is defined as follows:  

 ( ) ( ) , , :
P P

P x x x x=                             (2) 

The condition fulfilled by the membership and non-membership values is represented by 

( ) ( )
2 2

0 1;
P P

x x x  +    . 

To enhance decision-makers’ flexibility by extending the definitions, q-ROFS was introduced by 
researchers [9-11]. The definition is given below. 

Definition 3.   Rung Orthopair Fuzzy Set (q-ROFS) 

 ( ) ( ) , , :
Q Q

Q x x x x=                             (3) 

A natural integer q is utilized in q-ROFS as the exponent to express the inequality in the following 

form ( ) ( )0 1; ; 1
q q

Q Q
x x x q  +     . The degree of indeterminacy is given as: 

( )( ) ( )( )1 ;
q qq

Q Q Qx x x = −  −     

Seikh and Mandal [12] expanded q-ROFS into a more generalized and flexible form to better 
capture vagueness, which resulted in the definition of p, q-QOFS as follows. 

Definition 4.   Quasirung Orthopair Fuzzy Set (p, q-QOFS) 

 ( ) ( ) , , :x x x x
 

=                             (4) 

Differing from q-ROFS, p, q-QOFS applies two natural integers, p and q, as powers to uphold the 

condition: ( ) ( )0 1;
p q

x x x
 

  +     . The degree of indeterminacy is provided as: 

( )( ) ( )( )1 ; ; . . ( , )
p q

x x x L C M p q
   = −  −     =  

Different values of the natural integers p and q characterize the p, q-QOFS in terms of other types 
of fuzzy numbers, such as IFS ( 1p q= = ), PFS ( 2p q= = ), q-ROFS ( p q= ) and so on. 

Introducing the p, q Quasirung Orthopair Fuzzy Number (p, q-QOFN) allows us to preserve the 
basic definition and characteristics of p, q-QOFS while proceeding with further definitions. 

Definition 5. Operation on p, q-QOFNs: Let, ( , )=   , 1 1 1
( , ) =   and 2 2 2

( , ) =   are any 

three p, q-QOFNs. Then the following operations are defined. 
operations are defined 

5a. 1 2 1 2 1 2
iff  and          

5b. 1 2 1 2 1 2
iff  and  =  =   =   

5c. ( )1 2 1 2 1 2 1 2
,

p p p pp  =  +  −           

5d. ( )1 2 1 2 1 2 1 2
,

q q q qq  =    +  −          

5e. ( 1 (1 ) , )
p p  

= − −  , where 0  is a real number used as a scalar multiplier.   

5f. ( , 1 (1 ) )
q q  

 =  − − , where  is used as a power.      

5g. ( , )
c   = (Complement of )         
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Definition 6. Score and Accuracy function: The score function can be defined as follows: 

1
( ) ;  0 ( ) 1

2

p q
+ −

 =                             (5) 

It may be noted that ( ) increases monotonically while  increases and monotonically 

decreases as  increases.  
The accuracy function is obtained as 

( ) ;  0 ( ) 1
p q

 =  +                             (6) 

The p, q-QOFNs are compared according to the following rules 

i) If 1 2
( ) ( )   then 1 2

   

ii) If 1 2
( ) ( )   then 1 2

   

iii) If 1 2
( ) ( ) =  then  

1 2 1 2

1 2 1 2

1 2 1 2

( ) ( )

( ) ( )

( ) ( )

      

     

 =    =



  

Definition 7. Aggregation  

Let, ( , );  k 1, 2...
k k k

k =   = is a series of p, q-QOFNs with corresponding weight values denoted 

by k
 such that 

1

0; 1
k

k k

k=

   = . Then, the definitions of the p, q-QOF weighted averaging (𝑝, 𝑞-

QOFWA) and p, q-QOF weighted geometric (𝑝, 𝑞-QOFWG) aggregations are given below. 

1

1 2
1

1

1 (1 ) ,

, ( , ,.... )

k

k

k
pp
kk

k

k k k
kk

k

k

p q QOFWA



=

=


=

 
− −  

 −    =   =
 
  
 





                         (7) 

1

1 2
1

1

,

, ( , ,.... )

1 (1 )

k

k

k

k

k
k k

k k
kk

qq
k

k

p q QOFWG



=

=


=

 
 

 −    =  =
 
 − −  
 





                           (8) 

Definition 8. Interaction operations for p, q-QOFNs: The definitions proposed by Riaz et al., [13] 
for q-ROFNs can be extended to derive the interactive operations for p, q-QOFNs as follows:  

8a. ( )1 2 1 2 1 2 1 2 1 2 1 2 1 2
int

,
p p p p q q q q q p p qp q             = + − + − − −    

8b. ( )1 2 1 2 1 2 1 2 1 2 1 2 1 2
int

,
p p p p q p p q q q q qp q             = + − − − + −  

8c. ( )1 (1 ) , (1 ) (1 ) ; 0
p p q p p q       = − − − − − −   

8d. ( )(1 ) (1 ) , 1 (1 ) ; 0
p q p q q q        = − − − − − −   

Definition 9. p, q-QOF interaction weighted averaging: By generalizing the definitions of Riaz et 
al., [13], the p, q-QOF interaction weighted averaging (p, q-QOFIWA) and p, q-QOF interaction 
weighted geometric averaging (p, q-QOFIWG) operators can be defined as follows: 



Journal of Intelligent Decision Making and Granular Computing 

Volume 1, Issue 1 (2025) 199-220 

204 
 
 

1 2
1

1

1 1

, ( , ,.... )

1 (1 ) ,

(1 ) (1 )s s

s

k

k s s
s

k
pp
s

s

k k
p p qq
s s s

s s

p q QOFIWA
=

=

 

= =



−    = 

 
− − 

 
=  
 −  − − −  
 



 

                      (9) 

1 2
1

1 1

1

, ( , ,.... )

(1 ) (1 ) ,

1 (1 )

s

s s

s

k

k s
s

k k
q p qp
s s s

s s

k
qq
s

s

p q QOFIWG
=

= =

=



 



−    = 

 
−  − − −  

 
=  
 − −  
 

 



           (10) 

 
2.2 The Suggested Model 

In this section, the mathematical notion of the Subjective & SITDE integrated weighting approach 
used for weighting the criteria and the RAM method used for the ranking of the alternatives is shown. 

 
 2.2.1 Subjective approach using mathematical notion of the p, q-QROF sets 

Step 1. Computing the subjective weights of the criteria: In this step, subjective weights of the 
criteria are calculated following the mathematical notions of the p, q – QOFSs. 

Step 1(a). At this stage, experts evaluate each criterion based on their knowledge, experience, 
and expertise regarding their impact and importance. Experts consider the linguistic assessment scale 
given in Table 1. 

 
Table 1 
Linguistic assessment scales and their 
corresponding p, q – QOFNs 

Level Linguistic description 
p, q - QOFN 

μ ϑ 

9 Extremely Good (EG) 0.9 0.1 
8 Very Very Good (VVG) 0.8 0.2 
7 Very Good (VG) 0.7 0.3 
6 Medium Good (MG) 0.6 0.4 
5 Medium (M) 0.5 0.5 
4 Medium Bad (MB) 0.4 0.6 
3 Bad (B) 0.3 0.7 
2 Very Bad (VB) 0.2 0.8 
1 Very Very Bad (VVB) 0.1 0.9 

 
Step 1(b). In the second step of subjective weighting, the experts' evaluations are collected and 

the p, q – QOFNs corresponding to Table 1 are converted. Then these numbers are aggregated with 
the help of Eqs (7) and (8).  

Step 1(c). The score function values for p, q – QOFNs combined in the next step are calculated 
using Eq. (5).  

Step 1(d). The score function values obtained in the last step are normalized, and the subjective 
weight values of the criteria are calculated. For this, Eq. (11) is employed. 
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1

( )

( )

SUB

ij n

i

w

=

 
=



           (11) 

 
2.2.2 p, q – QOF-SITDE algorithm for identifying the objective weights of the criteria 

Step 2. The SITDE approach, developed by Gopisetty and Sama [7], provides a novel framework 
for objective weighting in MCDM. Unlike classical methods like Entropy, CRITIC, or MEREC, which rely 
on the assumption of symmetric distributions, SITDE incorporates skewness to directly handle 
distributional asymmetry. 

Step 2(a). Generation of the decision matrix: The process begins with collecting responses from 
experts ( 1,2,...., )gE g r= , who evaluate the alternatives ( 1, 2,..., )iA i m=  with respect to various criteria 

( 1, 2,...., )jC j n= . 

 ( ),
g

g g

ij ij ij
  = is the assessment of the th

i alternative subject to th
j criterion as opined by the th

g

specialist. The experts perform these linguistic appraisals considering linguistic terms given in Table 
1.  

Step 2(b). Aggregation of the individual ratings using p, q-QOFIWA operation: the aggregation 
operations are performed using Eq. (9). 

Step 2(c). Deriving the score values for constructing the decision matrix: Eq. (5) is employed to 
calculate the score values. Consequently, we derive the crisp decision matrix, which is given as 
follows: 

1 2

1

11 12 1

2

21 22 2

1 2

......

...

...
..

... ... ... ...

...

j

n

n

i

m m mn

C C C
A

y y y
A

y y y

A
y y y

 
 

 =
 
 
 
 

           (12) 

 
Step 3. Once the initial decision matrix is obtained, the basic algorithm of the SITDE method is 

followed for the determination of objective criterion weights.  
Step 3(a). Construct the initial performance matrix, as presented in Eq. (12). This matrix consists 

of m alternatives, denoted as ( 1, 2,..., )iA i m= , and n criteria, represented as ( 1, 2,...., )jC j n= .  

In Eq. (12), 𝑦𝑝𝑞 denotes the performance value of the 𝑖𝑡ℎ alternative against the 𝑗𝑡ℎ criterion. 

Step 3(b). In this step, the normalized performance matrix is created. This process is mandatory 
for the criteria to become comparable because they have different qualities. The SITDE approach 
considers the criteria according to whether they are cost or benefit criteria, and these normalization 
processes are conducted with the help of Eq. (13). 

 

min 1, 2,...,
,    

,    
max 1, 2,...,

ij

ij

ij

ij

ij

y i m
if i B

y
r

y
if i C

y i m

 =



= 
 
 =

           (13) 

 
In Eq. (13), B symbolizes the beneficial, and C denotes the cost criteria. 
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Step 3(c). Calculate the standard deviation of each criterion within the normalized performance 

matrix. The standard deviation corresponding to the 𝑖𝑡ℎ criterion, denoted by 𝜎𝑖  is computed as 
follows: 

 
( )

2

1

m

jij

i

j

r r

m

=

 
− 

  =
 
 
  


           (14) 

 
Here, the term 𝑟̅𝑞 depicts the arithmetic mean of the normalized values corresponding to criterion 

𝑗, and with the help of Eq. (15) are identified as follows: 

 1

m

ij

i
j

r

r
m

=

 
 
 =
 
 
  


           (15) 

Step 3(d). In this step, the coefficients of skewness, indicating the asymmetry in each criterion's 
score distribution, is computed for each normalized criterion employing Eq. (16).  

 
( ) ( )

3

11 2

m
jij

i

i j

r rm
s

m m =

  −
 =  

  − −   

            (16) 

Step 3(e). Standardize the calculated skewness values. At this stage, the skewness coefficients 
obtained from the distribution of each criterion are normalized by applying the transformation 
procedure given in Eq. (17). 

 ( ) ( )( )( )1 min 1
i i i

ls s s= + + +            (17) 

Step 3(f). The preliminary objective weight values assigned to each criterion are computed. 

 

1

j

OBJ i

n

i

j

ls
w

ls
=

=



           (18) 

Step 4. The application of multiple MCDM algorithms to determine criterion weights may lead to 
slight inconsistencies in the resulting coefficients. These variations primarily arise from the 
methodological diversity of the techniques, each relying on distinct computational frameworks and 
evaluation logics. To overcome this issue and enhance the robustness of the weighting process, this 
study employs a non-linear weight integration-based aggregation operator [14-15].  This approach 
consolidates the outcomes of different MCDM methods, thereby ensuring a more coherent, stable, 
and representative allocation of criterion weights. By jointly incorporating the insights of multiple 
weighting techniques, the proposed operator produces optimized coefficients that provide a more 
balanced and objective assessment of criterion importance. Specifically, the weights obtained 
through Subjective and SITDE are integrated using the non-linear aggregation formula presented 
below: 
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Here, int

j
w  denotes the integrated weight of the 𝑗𝑡ℎ criterion, while ( )

j

SUBJ
w



 and ( )
j

OBJ
w



 

represent the individual weights of the criterion 𝐶𝑗 as computed via the SITDE and subjective 

procedures, respectively. The parameters 𝜉 and 𝜑, where 𝜉, 𝜑 ∈ [0, 1], serve as priority factors, 
reflecting the relative emphasis assigned to the SITDE and subjective methodologies within the 
integration framework. Eq. (19) is structured to support decision makers (DMs) in articulating their 
relative preference for either weighting procedure through prioritization parameters. For instance, 
to reflect a stronger methodological preference for the SITDE than the subjective procedure, the DM 
can increase the value of 𝜉 within the interval [0, 1], amplifying its influence in the final weight 
computation. Lastly, it is worth noting that, in generating the initial solution, both prioritization 
parameters were assigned a value of 0.5, thereby ensuring equal contribution from the SITDE and 
subjective procedures within the integrated weighting structure. 

 
2.2.3 p, q – QOF-RAM algorithm for identifying the ranking performance of the alternatives 

Step 5. At this stage, the Root Assessment Method (RAM) approach, a ranking method developed 
by Sotoudeh-Anvari [16], is used to determine the relative importance of alternatives and rank them. 
There are some main reasons for choosing this method. Firstly, unlike traditional decision-making 
approaches, this approach uses a different degree of balance and compensation between cost and 
benefit criteria. In addition, the process does not bother to make pairwise comparisons, and 
parameter changes do not affect the results. At the same time, the RAM method resists the rank 
reversal problem compared to traditional ranking approaches. In addition, this approach was 
expanded with the help of p, q – QOF sets in this study, and the method was given the ability to 
manage uncertainties, ambiguities, and expert hesitations more effectively. 

 Step 5(a). The first step of the RAM method is the same as the first step of the SITDE method. 
The first decision matrix obtained from the calculations performed in Step 2 by following the 
mathematical notion of p, q – QOF sets is used in the same way in this step.    

 Step 5(b). Apply the linear sum normalization formula given in Eq. (20) to standardize the 
decision matrix.    

 ( )

1

,  1, 2,...,
ij

ij m

ij

i

y
r j n

y
=

= =



           (20) 

Step 5(c). The weighted normalized decision matrix is derived through the application of Eq. (21). 

 ( ), 1,2,...,
int

ij ij j
x r w  j n= =            (21) 

Step 5(d). The sums of the weighted normalized scores associated with beneficial and non-
beneficial criteria for the 𝑖𝑡ℎ alternative are obtained through Eqs. (22) and (23). 

 
1

n

i ij

i

s x
+ +

=

=            (22) 

 
1

n

i ij

i

s x
− −

=

=            (23) 

In the above equations, i
s
+  represents the sum of the weighted normalized values for the 

beneficial criteria, while i
s
−  denotes the sum of the weighted normalized values for the non-

beneficial criteria. 
Step 5(e). The overall score for each alternative is determined using the aggregation function 

below: 

 ( )2 2 , 1,2,...,iS

i i
RI s  j n−+

+
= + =            (24) 
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Step 5(f). The ranking of alternatives is determined by the magnitude of their i
RI values. A higher 

i
RI  value indicates a greater priority for the alternative 𝐴𝑖. In other words, alternatives with larger 

i
RI  values are considered superior options. 

Before delving further into the details of RAM, it is important to clarify the role of the constant 
value “2” in the radicand and index of Formula (4). The sums of the weighted normalized scores for 

beneficial criteria ( i
s
+ ) and cost criteria ( i

s
− ) for each alternative is typically less than one. This arises 

because normalization constrains the elements of the decision matrix to the range [0, 1], and these 
normalized values are subsequently multiplied by the criteria weights, which are themselves less than 

one, to produce the weighted normalized scores. As a result, the raw radical expression, iS

i
s−

+
, can 

yield unreliable or undefined results. 

In certain cases, all decision criteria may be cost-type, resulting in 0
i

s
+
= . To address this, a 

constant value of +2 is added to the radicand to ensure a meaningful outcome. Similarly, when all 

criteria are benefit-type, 0
i

s
−
=  may be zero. Again, adding the same constant (+2) prevents the 

calculation from involving a 0𝑡ℎ  root, which is mathematically undefined. This adjustment guarantees 
that the RAM formula produces distinct and valid results across all scenarios. 
 
3. A Numerical Illustration  

In this section, the integrated decision-making model introduced above has been applied to the 
decision-making problem related to the determination of advanced technology, which is the top 
priority in adopting and integrating into cold chains, and the results obtained have been summarized 
and discussed. 

 
3.1 The Preparation Process 

 Before proceeding to the proposed model's mathematical operations and implementation steps, 
a preparation process was designed in which applications such as defining the research problem, 
forming the expert board, determining the criteria and alternatives, and collecting linguistic data 
related to them were carried out.  

 
3.1.1 Problem description 

This study aims to identify advanced technologies from Industry 4.0 (IoT sensor systems; 
blockchain-based traceability platforms; cloud-based management software; AI/ML-powered 
forecasting and optimization tools) as a multi-criteria, ambiguous, and expert-based decision 
problem that should be adopted and integrated into business processes as a result of operational, 
environmental, regulatory, and stakeholder-oriented multi-criteria-based evaluation. The decision 
problem includes the following components: (i) multiple performance metrics of advanced 
technologies (cost of installation, data security, traceability, ease of use, integration potential, energy 
consumption, system reliability, compliance with standards, scalability, environmental impact, 
stakeholder acceptance), (ii) linguistic and hesitant evaluations of decision makers, (iii) contradictions 
between criteria and skewness of distributions, and (iv) parametric modeling of uncertainty.  

The solution objective is to rank the alternatives by considering these structural uncertainties and 
contradictions, and to provide a transparent technology selection guide that can be applied at the 
enterprise level. For this purpose, the study was based on uncertainty-based assessment expressed 
with p, q-Quasirung Orthopair Fuzzy Sets; non-linear integration of subjective (expert linguistic) and 
SITDE weighting approaches; and RAM-based sequencing. 
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3.1.2 Construction of the Experts Panel 
A committee of experts was formed to reflect the multidimensional structure of the study's 

research problem. In this context, people with expertise in logistics, information technologies, food 
safety, and sustainability were identified, and a candidate pool was created. Nine candidates were 
selected, and the four experts who best met the determined criteria preferred participation on the 
board. The candidates' academic qualifications, professional experience, field suitability, and 
multifaceted perspectives were considered during the selection process. Regarding scholarly 
competence, having at least a master's degree and at least ten years of professional experience were 
among the basic conditions. In addition, the priority evaluation factors were that the candidates 
specialized in a field directly related to the criterion set of the study and had both academic and 
sectoral experience. 

As a result of this process, U1 (Logistics and Supply Chain, 16 years of experience, PhD) for its 
contributions to the integration of logistics processes and cost management; U2 (Information and 
Communication Technologies, 12 years of experience, Master's Degree) thanks to its expertise in 
digital infrastructures, data security and blockchain technologies; U3 (Food Safety and Cold Storage, 
18 years of experience, PhD) due to its knowledge in quality management, cold storage and 
traceability of food products; U4 (Sustainability and Industry 4.0, 10 years of experience, PhD) was 
included in the board with his studies on environmental impact, energy consumption and Industry 
4.0 perspective. Thus, the board is structured to cover technological, operational, food safety, and 
sustainability dimensions in a balanced manner. 
 
3.1.3 Identification of the Criteria and Alternatives 

The criteria and alternatives used in this study were determined systematically to holistically 
evaluate the selection process of advanced technologies in cold chain logistics. First, a literature 
review was conducted, sectoral reports were examined, and expert opinions were obtained. Since 
operational, environmental, and regulatory dimensions come to the fore due to the nature of the 
cold chain, a set of criteria has been created to reflect this multidimensionality. In this context, 
Installation Cost is an economic factor that directly affects the applicability of technologies, since 
Data Security is one of the most critical risk areas of digital solutions; Traceability Capability, product 
safety, and regulation compliance to ensure compliance; Ease of Use has been chosen to increase 
the effectiveness of the application processes. Integration Potential represents the ability to adapt 
with existing supply chain infrastructures; Energy Consumption and Environmental Impact criteria 
have enabled sustainability-oriented evaluation. System Reliability ensures the sustainability of 
uninterrupted operations; Compliance and Standards ensure compliance with regulatory 
frameworks; Flexibility and Scalability are the ability of technologies to adapt to the future; 
Customer/Supplier Acceptance is included to measure stakeholders' approach to technology and 
willingness to adopt it (Table 2). 

 
Table 2 
The identified criteria set 
Code Criteria Code Criteria 

C1 Installation Cost C7 System Reliability 
C2 Data Security C8 Compatibility and Standards 
C3 Traceability C9 Flexibility and Scalability 
C4 Ease of Use C10 Environmental Impact 
C5 Integration Potential C11 Customer/Supplier Acceptance 
C6 Energy Consumption   
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In selecting alternatives (Table 3), technologies that stand out in cold chain logistics today and 
have a high potential for transformation were considered. IoT Sensor Systems are essential as they 
allow real-time monitoring of critical parameters such as temperature and humidity. Blockchain 
platforms have been considered to provide transparent and reliable traceability of products 
throughout the supply chain. Cloud Software has been among the alternatives due to its ease of data 
storage, sharing, and management, and its potential to increase operational efficiency. Finally, AI/ML 
Solutions were evaluated for their contribution to intelligent decision-making processes, including 
demand forecasting, routing optimization, and risk management. 

 
Table 3 
The determined advanced 
technologies for cold chains 

Code Criteria 

A1 IoT Sensor Systems 

A2 Blockchain Platforms 

A3 Cloud Software 

A4 AI/ML Solutions 

 
The criteria and alternatives determined within this framework reflect the scope of the research 

problem holistically, allowing the study to analyze technologies comparatively with a multi-criteria 
decision-making approach. 

 
3.1.4 Collecting p, q – QOF Data regarding the Criteria and Alternatives 

The study collected expert opinions on evaluating criteria and alternatives in two separate stages. 
In the first stage, experts were brought together to determine the importance of the criteria used in 
the research problem. In this process, each expert evaluated the relative importance of the criteria 
in the context of the situation through the statements in the linguistic assessment scale in Table 1. 
Thus, the importance levels of the criteria were obtained based on the experts' linguistic preferences. 

In the second stage, the performance of the alternatives against the determined criteria was 
evaluated. The experts expressed the level at which each alternative meets each criterion, again 
based on the linguistic terms given in Table 1. In this way, the strengths and weaknesses of the other 
options were revealed through linguistic expressions, and the evaluations obtained were then 
converted into numerical form and included in the analysis process. In both stages, the experts' 
evaluations were made by considering the linguistic scales defined in Table 1, so that both the 
weights of the criteria and the performance values of the alternatives were obtained consistently 
and comparably. 

 
3.2 Calculation of the Weights of the Criteria 

 At this stage, in order to determine the weights of the Criteria, first the subjective criterion 
weights were calculated by using the mathematical applications of the p, q – QOF sets, then the 
objective weights of the Criteria were calculated by following the basic algorithm of the p, q – QOF 
based SITDE approach, and then the final criterion weight values were obtained by combining these 
subjective and objective weights.    

 
3.2 Calculation of the subjective weights of the criteria 

 At this stage, in order to determine the weights of the Criteria, first the subjective criterion 
weights were calculated by using the mathematical applications of the p, q – QOF sets, then the 
objective weights of the Criteria were calculated by following the basic algorithm of the p, q – QOF 
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based SITDE approach, and then the final criterion weight values were obtained by combining these 
subjective and objective weights.    

Step 1. The subjective weights of the criteria were calculated following the mathematical 
definitions of p, q – QOFSs. Accordingly, the experts evaluated each criterion based on their 
knowledge, experience, and expertise about the impact and importance of the criteria. The linguistic 
scale given in Table 1 was considered in the evaluations. Table 4 shows the linguistic assessments of 
the experts.  

 
Table 4 
Linguistic assessment of the experts 
Codes Criteria DM1 DM2 DM3 DM4 

C1 Installation Cost VG M MG MG 
C2 Data Security MG EG VVG VG 
C3 Traceability VVG VVG EG VVG 
C4 Ease of Use MG VG MG MG 
C5 Integration Potential VVG EG VG VVG 
C6 Energy Consumption VG MG MG VVG 
C7 System Reliability EG VVG VVG VG 
C8 Compatibility and Standards VG VG EG VVG 
C9 Flexibility and Scalability EG VVG VG VG 

C10 Environmental Impact MG M VVG EG 
C11 Customer/Supplier Acceptance VVG VG VG VVG 

 
Then, in the second stage of subjective weighting, the experts' evaluations were collected and 

converted into p, q – QOFN values corresponding to Table 1. Later, these values were concatenated 
with the help of Eqs. (7) and (8). The score function values of the combined p, q – QOFNs were 
calculated using Eq. (5). The score function values obtained in the last step were normalized, and the 
subjective weights of the criteria were calculated. Eq. (11) was used for this operation. As a result, 
the subjective weight values of the criteria were reached by systematically following the steps. Table 
5 shows the combined p, q – QOFNs, score function values, and final weights of the criteria obtained 
after the calculations.  

 
Table 5 
The final results of the computations 
Codes Criteria μ ϑ Score Val. Weight 

C1 Installation Cost 0.6118 0.6249 0.4192 0.0824 
C2 Data Security 0.7879 0.7409 0.4701 0.0924 
C3 Traceability 0.8333 0.7801 0.4851 0.0953 
C4 Ease of Use 0.6299 0.6251 0.4296 0.0844 
C5 Integration Potential 0.8174 0.7648 0.4807 0.0944 
C6 Energy Consumption 0.6936 0.6627 0.4473 0.0879 
C7 System Reliability 0.8174 0.7648 0.4807 0.0944 
C8 Compatibility and Standards 0.7996 0.7481 0.4758 0.0935 
C9 Flexibility and Scalability 0.7996 0.7481 0.4758 0.0935 

C10 Environmental Impact 0.7670 0.7334 0.4566 0.0897 
C11 Customer/Supplier Acceptance 0.7570 0.7043 0.4689 0.0921 

 
3.3 Calculation of the objective weights of the criteria 

 At this stage, the objective weights of the criteria were calculated by following the basic 
algorithm of the p, q – QOF-based SITDE approach. The results obtained are shown below. 

Step 2. At this stage, the experts were asked to evaluate the performance of the alternatives 
against various criteria, and the experts made their evaluations using the linguistic terms given in 
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Table 1. Then, individual evaluations were aggregated with the p, q–QOFIWA process. This process 
was carried out with the help of Eq. (9). Score values were obtained to create the decision matrix. As 
a result of these score values calculated using Eq. (5), the first decision matrix shown in Table 6 was 
obtained. 

 
Table 6 
The initial decision matrix 

Codes A1 A2 A3 A4 
C1 0.6363 0.4375 0.6037 0.5545 
C2 0.6574 0.8595 0.7119 0.7360 
C3 0.8073 0.8595 0.7119 0.7119 
C4 0.6574 0.5280 0.7744 0.6037 
C5 0.6858 0.6858 0.8354 0.7360 
C6 0.6574 0.5337 0.6363 0.5545 
C7 0.7360 0.6574 0.7360 0.6265 
C8 0.7314 0.7383 0.7119 0.6858 
C9 0.7360 0.6265 0.7538 0.8354 

C10 0.6889 0.7146 0.6141 0.7146 
C11 0.7119 0.6037 0.7360 0.6574 

 
For example, the element value in cell C1-A1 is calculated as follows. 
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Step 3. Once the initial decision matrix was obtained, the basic algorithm of the SITDE method 
was applied to determine the objective weights of the criteria. First, the performance matrix was 
created as shown in Eq. (12). This matrix consisted of m alternatives and n criteria. Here, each matrix 
element shows the performance value of alternative i against criterion j. Then, with the help of Eq. 
(13), the normalized performance matrix was obtained (Table 7). 

 
Table 7 
The normalized decision matrix 

Codes A1 A2 A3 A4 
C1 1.0000 0.6876 0.9488 0.8715 
C2 1.0000 0.7648 0.9234 0.8931 
C3 0.8818 0.8283 1.0000 1.0000 
C4 0.8032 1.0000 0.6818 0.8746 
C5 1.0000 1.0000 0.8208 0.9318 
C6 1.0000 0.8120 0.9679 0.8435 
C7 0.8512 0.9531 0.8512 1.0000 
C8 0.9377 0.9288 0.9633 1.0000 
C9 0.8512 1.0000 0.8311 0.7499 

C10 0.8915 0.8594 1.0000 0.8594 
C11 0.8480 1.0000 0.8202 0.9184 

 
Then, the standard deviation for each criterion was calculated using Eq. (14). Immediately 

afterwards, the arithmetic mean of each criterion was determined with the help of Eq. (15). Table 8 
shows the standard deviation and arithmetic mean values for the criteria. 
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Table 8 

j
  and jr  values for the criteria  

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

jσ 0.1369 0.0979 0.0865 0.1331 0.0846 0.0921 0.0748 0.0319 0.1043 0.0667 0.0803 

jr 0.8770 0.8953 0.9275 0.8399 0.9381 0.9059 0.9139 0.9574 0.8581 0.9026 0.8966 

 
In the following substep, the coefficients of skewness, indicating the asymmetry in each 

criterion's score distribution, was computed for each normalized criterion employing Eq. (16). Then, 
skewness values were normalized using Eq. (17). In the last step, criterion weights were determined 
with the help of Eq. (18) using these values. Table 9 shows the results obtained.  

 
Table 9 
Final weight values of the criteria  

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

A1 0.7267 1.2205 -0.1475 -0.0209 0.3913 1.0698 -0.5867 -0.2379 -0.0003 -0.0046 -0.2224 
A2 -2.6494 -2.3660 -1.5108 1.7385 0.3913 -1.0616 0.1435 -0.7209 2.5223 -0.2714 2.1296 
A3 0.1445 0.0234 0.5883 -1.6748 -2.6694 0.3068 -0.5867 0.0061 -0.0172 3.1175 -0.8604 
A4 -0.0001 0.0000 0.5883 0.0177 -0.0004 -0.3104 1.5239 2.3724 -1.1162 -0.2714 0.0198 

i
s -1.1855 -0.7481 -0.3212 0.0403 -1.2582 0.0031 0.3293 0.9465 0.9257 1.7134 0.7111 

i
ls 0.7288 0.9203 1.0774 1.1935 0.6931 1.1821 1.2775 1.4362 1.4312 1.6037 1.3786 

j

OBJ
w 0.0564 0.0712 0.0834 0.0924 0.0536 0.0915 0.0989 0.1111 0.1108 0.1241 0.1067 

 

Step 4. Then, subjective and objective criterion weights were combined using equation 19, and   

and  parameters were used for this, and both were taken as 0.5 in this study (Table 10). 
 

Table 10 
Subjective, objective, and integrated criteria weights 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 

j

sub
w 0.0824 0.0924 0.0953 0.0844 0.0944 0.0879 0.0944 0.0935 0.0935 0.0897 0.0921 

j

obj
w 0.0564 0.0712 0.0834 0.0924 0.0536 0.0915 0.0989 0.1111 0.1108 0.1241 0.1067 

j

int
w 0.0687 0.0817 0.0898 0.0890 0.0717 0.0903 0.0974 0.1027 0.1025 0.1063 0.0999 

Rank 11 9 7 8 10 6 5 2 3 1 4 

 
According to the results, C10 Environmental Impact has been determined as the most critical and 

influential criterion for selecting and prioritizing advanced technologies for cold chains. This is 
followed by C8 Compliance and Standards and C9 Flexibility and Scalability criteria, respectively. The 
rest are listed as C11 Customer/Supplier Acceptance > C7 System Reliability > C6 Energy Consumption 
> C3 Traceability Capability > C4 Ease of Use > C2 Data Security > C5 Integration Potential > C1 
Installation Cost. 

 
3.3 Identification of the Advanced Technology Alternatives 

 Step 5. At this stage, the relative importance of the alternatives was determined, and their ranks 
were established using the Root Assessment Method (RAM) approach, a ranking method developed 
by Sotoudeh-Anvari [16]. The first step of the RAM method was the same as the first step of the SITDE 
method. In the second step, the first decision matrix obtained following the mathematical structure 
of p,q–QOF sets was used similarly in this stage. 
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Then, the linear sum normalization formula given in Eq. (20) was applied to standardize the first 
decision matrix. Table 11 shows the normalized decision matrix with normalized values. 

 
Table 11 
The normalized decision matrix 

Codes A1 A2 A3 A4 
C1 0.0000 1.0000 0.1640 0.4114 
C2 0.0000 1.0000 0.2700 0.3890 
C3 0.6464 1.0000 0.0000 0.0000 
C4 0.5249 0.0000 1.0000 0.3072 
C5 0.0000 0.0000 1.0000 0.3356 
C6 0.0000 1.0000 0.1705 0.8321 
C7 1.0000 0.2818 1.0000 0.0000 
C8 0.8675 1.0000 0.4977 0.0000 
C9 0.5241 0.0000 0.6092 1.0000 

C10 0.7438 1.0000 0.0000 1.0000 
C11 0.8180 0.0000 1.0000 0.4056 

 
The weighted normalized decision matrix was obtained using Eq. (21) in the next step. 

Afterwards, the sums of the weighted normalized scores associated with the benefit and cost criteria 
of the alternatives were calculated using Eqs. (22) and (23). The integration function given in Eq. (24) 
determined the total score for each alternative. The order of the options was made according to the 
magnitude of the values obtained. A higher value indicates that the relevant alternative is more 
prioritized. Therefore, alternatives with great value have been considered superior options. Table 12 
shows the results obtained regarding the ranking of the alternatives. 

 
Table 12 
The weighted normalized matrix and the obtained 
results 

Codes A1 A2 A3 A4 
C1 0.0000 1.0000 0.1640 0.4114 
C2 0.0000 1.0000 0.2700 0.3890 
C3 0.6464 1.0000 0.0000 0.0000 
C4 0.5249 0.0000 1.0000 0.3072 
C5 0.0000 0.0000 1.0000 0.3356 
C6 0.0000 1.0000 0.1705 0.8321 
C7 1.0000 0.2818 1.0000 0.0000 
C8 0.8675 1.0000 0.4977 0.0000 
C9 0.5241 0.0000 0.6092 1.0000 

C10 0.7438 1.0000 0.0000 1.0000 
C11 0.8180 0.0000 1.0000 0.4056 

+1S 0.5057 0.4080 0.4935 0.3325 

i-S 0.0000 0.1590 0.0267 0.1034 

iRI 1.5829 1.5024 1.5696 1.4958 
Rank 1 3 2 4 

 
The ranking results obtained show that the most prioritized advanced technology that should be 

prioritized is A1 IoT Sensor Systems, which is consistent with prior research emphasizing the role of 
wireless sensor-based IoT architectures in ensuring product safety and compliance in cold chains. 
This was followed by A3 Cloud Software, A2 Blockchain Platforms ranked third, and A4 AI/ML 
Solutions ranked last. 
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4. Robustness and Validity Check  
A comprehensive soundness check was carried out at this stage. For this, firstly, the effect of the 

change in criterion weights on the ranking results was examined. Then, the values of the ξ and φ 
parameters were changed, and their impact on the results was observed. In the third stage, the 
resistance of the proposed model to the rank reversal problem was tested. In the first stage, the 
criteria weights were changed in 110 scenarios following the basic algorithm proposed by Görçün et 
al. [17]. Varying weight values in each scenario were included in the evaluation process, and the 
effect of these different weight values on the ranking results was observed. Figure 1 shows the impact 
of the changed weight values on the ranking results in 110 scenarios.  

 
Fig. 1. New ranking results for 110 scenarios 

 
As shown in Figure 1, when the weight values of the most effective criteria were changed by 80% 

or more, some changes were observed in the ranking results for the alternatives. On the other hand, 
it is not obvious that the weight value of a criterion decreases to this extent in real life conditions. 
While the ranking results of A1 and A3 changed in only two scenarios, the ranking results of A2 and 
A4 differed in 3 scenarios. In addition, the average similarity rate is calculated to be 97.7%, which is 
quite high if bird. These findings show that the proposed model is maximally resistant to changes in 
criterion weights.  

In the second stage, the values of ξ and φ parameters were changed from 0 to 1, and ten scenarios 
were prepared for this. In each scenario where the values of these parameters were changed, the 
application of the sorting method used in this study was repeated. Figure 2 shows the results of this 
analysis.  
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Fig. 2. Ranking results for ten scenarios 

As can be seen in Figure 2, when the parameter values were changed, there was no change in the 
ranking results for the alternatives.  

In the last stage, to measure the resistance of the proposed model to the rank reversal problem, 
the worst and next alternative in each scenario was extracted [18], the ranking methodology was 
applied again for the rest and the results obtained were examined. Table 13 presents the results of 
the rank reversal test.  

 
Table 13 
The results of the rank reversal test 

Codes Scenarios 
Original A1 >A3 >A2 > A4 

SC2 A1 >A3 >A2  
SC2 A1 >A3  
SC3 A1 

 
As shown in Table 13, although the worst alternative was extracted in each scenario, the ranking 

result did not change. This finding proves that the proposed model is resistant to the rank reversal 
problem.  
 
5. Results 

The findings of this study provide several noteworthy insights into the adoption of advanced 
technologies in cold chain logistics. Based on the integrated weighting approach, the most critical 
evaluation criterion was identified as environmental impact (C10), followed by compliance with 
standards (C8) and flexibility and scalability (C9). These results indicate that decision-makers in cold 
chain operations place greater emphasis on sustainability, regulatory alignment, and adaptability to 
future demands, rather than solely focusing on cost efficiency or ease of use. Such prioritization 
reflects the increasing pressures of environmental regulations, corporate sustainability strategies, 
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and the dynamic nature of logistics infrastructures. In contrast, installation cost (C1) and integration 
potential (C5) were ranked lowest, suggesting that while economic considerations remain relevant, 
they are no longer the dominant drivers of technology adoption decisions in this sector. 

Regarding technological alternatives, the results of the RAM method show that IoT-based sensor 
systems (A1) emerged as the most suitable solution for integration into cold chain business models. 
This finding underscores the pivotal role of real-time monitoring of temperature, humidity, and other 
critical parameters in ensuring product quality [19] and compliance. IoT sensors not only provide 
operational transparency but also directly support sustainability objectives by reducing spoilage and 
waste [20].  Cloud-based software (A3) ranked second, highlighting the importance of digital 
platforms for centralized data storage, accessibility, and process optimization. Meanwhile, 
blockchain platforms (A2) secured the third rank, indicating their growing but still secondary 
relevance compared to real-time monitoring tools. Finally, AI/ML solutions (A4), while recognized for 
their potential in forecasting and optimization, were ranked lowest—likely due to their higher 
complexity, implementation challenges, and the need for extensive data maturity. 

The outcomes offer significant implications for both practitioners and policymakers: 
Logistics firms should prioritize IoT sensor deployment as the foundational step in digital 

transformation. Once real-time monitoring and traceability are achieved, subsequent integration of 
cloud platforms and blockchain can further strengthen supply chain transparency and compliance. 

The predominance of environmental criteria suggests that investments in technology are no 
longer just about efficiency but also about meeting sustainability goals. This aligns with global green 
policies, such as carbon neutrality commitments and waste reduction targets. The high ranking of 
compliance and standards highlights the need for policymakers to design clearer guidelines and 
incentive mechanisms. Governments can accelerate technology adoption by offering tax incentives 
or subsidies for firms adopting environmentally friendly and regulatory-compliant technologies. 

Customer and supplier acceptance ranked relatively high (C11), signaling that successful adoption 
requires not only technological readiness but also stakeholder trust and willingness. Firms should, 
therefore, implement awareness and training programs to ensure smoother adoption. 

This study reveals that the cold chain industry is undergoing a paradigm shift: firms increasingly 
perceive sustainability and compliance as sources of competitive advantage rather than constraints. 
Additionally, the relatively lower ranking of cost-related factors shows a broader acceptance that 
long-term benefits—such as reduced spoilage, compliance with green regulations, and enhanced 
reputation—outweigh short-term financial burdens. Importantly, the robustness analysis confirmed 
that the proposed framework maintains stable rankings even under significant changes in weights, 
ensuring reliability for real-world decision-making. 

This study provides several methodological and theoretical innovations: By combining subjective 
(expert-driven) and objective (SITDE) weighting with RAM, the model bridges the gap between expert 
judgment and systematic data-driven approaches. The use of p, q-Quasirung Orthopair Fuzzy Sets 
enhances the capacity to model uncertainty, vagueness, and decision-maker hesitation more 
effectively than classical fuzzy sets. Unlike previous studies that focus narrowly on cost or technical 
performance, this framework incorporates sustainability, regulatory, and stakeholder dimensions, 
providing a comprehensive decision-making tool. The results remained highly stable across multiple 
scenarios, demonstrating the model’s resistance to rank reversal and its suitability for complex real-
world applications. Beyond theoretical contributions, the framework offers an actionable roadmap 
for logistics companies, policymakers, and supply chain managers seeking structured guidance in 
technology adoption. 

In summary, the study demonstrates that IoT-based monitoring systems are the cornerstone of 
sustainable and resilient cold chain management, while complementary technologies such as cloud 
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platforms, blockchain, and AI/ML play supporting but progressively important roles. By integrating 
advanced MCDM techniques, the proposed framework ensures a balanced and reliable evaluation 
that reflects the complexity of real-world logistics systems. 

Ultimately, the findings underscore that the future of cold chain logistics lies in green, 
transparent, and digitally enabled systems. Firms that prioritize sustainability and compliance-driven 
technology adoption will not only enhance their operational efficiency but also secure long-term 
resilience in an increasingly competitive and regulated market environment. The methodological 
rigor and robustness of the proposed approach ensure that it can serve as a replicable template for 
decision-making in other domains of logistics and supply chain management, marking both a 
theoretical advancement and a practical contribution to the field. 
 
6. Discussion 

The findings of this research reveal a critical paradigm shift in the adoption of cold chain 
technology. In contrast to earlier studies, which, for example, Liang et al., [3] and East et al., [4] 
virtually solely emphasized economic or technical efficiency drivers, our outcomes demonstrate that 
today, sustainability and compliance drivers dominate decision-making. This aligns with subsequent 
research [4, 19] that also placed particular stress upon environmental pressures and regulatory 
regimes as deciding forces of supply chain digitalization. Our contribution extends these perspectives 
by combining both subjective expert information and objective distribution-based weighting (SITDE) 
in a formal fashion, guided through powerful sequencing with RAM. 

Compared with well-known MCDM approaches such as AHP–TOPSIS or fuzzy DEMATEL, the 
proposed framework more accurately captures uncertainty, asymmetry, and expert hesitance. For 
instance, earlier research based on entropy- or CRITIC-based weighting often made symmetric 
distribution assumptions and could thus not reflect extreme evaluations from heterogeneous 
experts. Our SITDE-p,q-QROFS overcomes this limitation directly by offering a more robust and 
versatile modeling framework. 

The role of IoT-based sensing systems as the most relevant technology is underpinned by existing 
literature [19] that cited the inherent significance of real-time monitoring. Nonetheless, our model 
also captures that cloud software is more relevant than blockchain use in current cold chain contexts. 
This departure from some past research highlights the fact that while blockchain is promising, its 
adoption is also hindered by integration complexity and high implementation cost.  

Managerially, the results provide an adoption blueprint in a step-by-step manner: 
i. Begin with IoT deployment for traceability and monitoring, 

ii. Deploy cloud platforms for centralized data and operational effectiveness, 
iii. Deploy blockchain for compliance and transparency, 
iv. Incrementally explore AI/ML as data maturity and expertise develop. 

This approach is especially applicable for companies in emerging economies, where limitations in 
resources and low digital maturity can hinder the parallel adoption at scale of all Industry 4.0 
technologies. 
 
7. Conclusion 

This study developed and applied an integrated multi-criteria decision-making framework based 
on p, q-Quasirung Orthopair Fuzzy Sets, SITDE, and RAM to evaluate and prioritize advanced 
technology alternatives for cold chain logistics. The findings revealed that environmental impact, 
compliance with standards, and flexibility and scalability are the most influential criteria shaping 
technology adoption decisions. This reflects the growing importance of sustainability, regulatory 
alignment, and adaptability in an era where logistics operations face increasing pressures from green 
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policies and dynamic supply chain demands. Among the alternatives, IoT-based sensor systems were 
identified as the most suitable technology, followed by cloud-based management software and 
blockchain platforms, while AI/ML solutions ranked lowest due to implementation challenges and 
data maturity requirements. 

The study offers important managerial implications by demonstrating that logistics firms should 
strategically prioritize IoT-based solutions as a foundation for digital transformation and 
subsequently integrate cloud and blockchain platforms to build more transparent, sustainable, and 
resilient supply chains. At the policy level, the results highlight the need for supportive regulatory 
frameworks, incentives, and clear compliance standards to accelerate the adoption of 
environmentally friendly and innovative technologies. The framework also underscores the 
importance of stakeholder acceptance, signaling that successful adoption requires not only technical 
readiness but also social and organizational alignment. 

From a theoretical and methodological perspective, the proposed framework contributes to the 
literature by integrating subjective and objective weighting methods, employing a novel uncertainty-
handling mechanism, and ensuring robust and stable results across multiple scenarios. It not only 
advances academic discussions on decision-making in logistics but also provides a practical and 
replicable roadmap for real-world applications. 

Despite these contributions, the study is not without limitations. The evaluation was based on 
the judgments of a limited number of experts, which may restrict the generalizability of the results. 
Moreover, the analysis focused on a specific set of technologies and criteria, which, although 
comprehensive, may not fully capture all potential technological innovations or context-specific 
considerations in diverse supply chains. 

Future research can address these limitations by expanding the expert pool to include a wider 
range of stakeholders from different regions and industries, thereby enhancing the robustness and 
representativeness of the findings. Additionally, subsequent studies could explore dynamic decision-
making models that account for the evolving nature of technological adoption over time, integrating 
longitudinal data and scenario-based simulations. Another promising avenue lies in testing the 
proposed framework across different sectors of logistics and supply chain management, such as last-
mile delivery, maritime transport, or warehousing, to validate its adaptability and scalability. 
Furthermore, combining this model with real-world performance data and life-cycle assessments 
could provide deeper insights into the environmental and economic impacts of emerging 
technologies. 

In conclusion, this research provides both theoretical advancements and practical guidance for 
decision-makers navigating the complexities of technology adoption in cold chain logistics. By 
emphasizing sustainability, compliance, and adaptability, and by offering a rigorous yet flexible 
decision-making tool, the study lays the foundation for further exploration and innovation in building 
smarter, greener, and more resilient supply chains for the future. 
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