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Increasing competition, accelerating production processes, and dynamic
market conditions are forcing companies to make strategic decisions.
Effective management of contract supply production processes is essential in
the textile sector to promptly meet customer demands while ensuring high
quality and affordability. In this context, choosing the best subcontractor is
crucial for a company seeking a competitive advantage. Factors such as
supplier capacity, quality of workmanship, timely delivery, and cost efficiency
have a direct impact on the performance of textile companies. During the
supplier evaluation process, factors such as sustainability criteria, efficiency,
speed, and quality should be taken into account. This study proposes a
decision-support methodology for evaluating subcontractors in textile
companies that outsource manufacturing. The methodology incorporates a
two-tiered Pareto analysis to identify focus product groups, fuzzy multi-
criteria decision-making techniques for subcontractor assessment, and
mathematical modelling approaches for capacity allocation. A real case study
is presented to identify the most profitable product groups via Pareto
analysis, to evaluate subcontractors through the Fuzzy-based Ordinal Priority
Approach (OPA) and the Ranking of Alternatives by Functional Mapping of
Criteria Sub-Intervals to Single Intervals (RAFSI) method, and a mixed-integer
programming model for scheduling orders to subcontractors’ production
plans. The proposed approach enhances the effectiveness of the supplier
selection process and offers a practical framework for strategic decision-
making in contract manufacturing in similar industrial settings.

1. Introduction

The textile industry is one of the most labor-intensive sectors, serving as a cornerstone of
industrialization and contributing significantly to the economic development of emerging countries.
The textile industry, as part of the apparel supply chain, provides a wide range of production
capabilities [1]. To remain competitive in the global market, companies must satisfy customer
demands on time by considering order quantity, price, quality, and cost. To effectively manage

operations through these factors,
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manufacturers. Turkey has positioned itself as a strong contract manufacturing hub in the textile
industry, supplying products to numerous global brands. Due to the preference of international firms
for Business-to-Business sales strategies in Turkey, partnerships with domestic corporate textile
companies have become increasingly common in practice. This advancement has raised the emphasis
on quality standards in production processes and contributed significantly to the growth and
competitiveness of the textile and apparel sectors [2].

Effective supply chain management hinges on the strategic selection of contract suppliers. The
appropriate selection of suppliers allows companies to respond rapidly and flexibly to demand while
maintaining product quality, delivery quality, and reliable performance[3]. Furthermore,
collaborating with suitable suppliers helps minimize operational risks and enhance customer
satisfaction, thereby strengthening the company’s competitive advantage. Therefore, the supplier
selection process should consider factors beyond cost, adopting a broader, multi-dimensional
evaluation approach that effectively addresses the inherent uncertainties of supply networks. This
evolution toward fuzzy-based methodologies and sustainability-oriented criteria reflects the textile
industry's growing recognition that supplier relationships represent strategic partnerships requiring
robust decision support systems capable of managing ambiguity while advancing long-term
organizational resilience and sustainability goals. The uncertainty in supplier evaluation criteria
complicates the scoring and decision-making process. In the literature, the main sources of
uncertainty are classified as demand, capacity, cost, delivery time, quality, and disruptions [4].
Researchers have developed various methods to address this uncertainty, with fuzzy techniques
being among the most commonly used in supplier or subcontractor firms.

Fuzzy Multi-Criteria Decision Making (MCDM) methods facilitate supplier selection and
evaluation processes using linguistic variables, also allowing uncertain data to be converted into
guantitative values. Fuzzy MCDM approaches have proven to yield reliable and practical results under
conditions of ambiguity, as demonstrated in the literature. They support decision-making by
maximizing profit, minimizing costs, and improving efficiency, contributing to effective resource use
at both strategic and operational levels [5].

The organization of this study is as follows: Section 2 presents a review of the literature on
supplier evaluation and selection, with a particular focus on applications in the textile industry.
Section 3 details the proposed methodology, outlining the four-step framework for supplier selection
and order allocation. Section 4 presents a real-world case study to demonstrate the practical
implementation of the framework. Section 5 offers managerial insights based on the analysis, and
Section 6 concludes the study by summarizing key findings and implications.

2. Recent literature

With the continuous escalation of customer expectations, global enterprises face increasing
challenges in enhancing and optimizing their supply chains to effectively respond to evolving
consumer demands. These challenges are compounded by pressures from global competition, the
spread of enterprise information systems, and shorter product life cycles, which result in increasingly
complex supply chains and a greater need for more sophisticated management methods [6]. As
customer expectations increase, businesses must not only meet these demands but also anticipate
future trends to maintain their competitive advantage. This requires leveraging technological
advances such as Artificial Intelligence, Internet of Things, and Blockchain to enhance supply chain
visibility, efficiency, and responsiveness. By strategically developing relationships with suppliers who
adopt these innovative approaches, businesses can build resilient supply chains capable of
withstanding global competition and technological disruption. Table 1 examines decision-making
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methodologies used in the literature for subcontractor manufacturer and supplier selection in the
textile industry.

Table 1

Supplier Selection in Textile Industry
Study Weighting Method Scoring Method Uncertainty
Nazam et al., [7] Fuzzy AHP Fuzzy TOPSIS v
Guo et al., [8] Direct fuzzy weighting Fuzzy Axiomatic Design v
Goren and Senocak [9] MACBETH Taguchi Loss functions X
Giindiiz and Giindiiz [10] Direct fuzzy weighting Fuzzy TOPSIS v
Wang and Cheng [11] Fuzzy AHP Fuzzy TOPSIS v
Guarnieri and Trojan [12] AHP ELECTRE-TRI X
Tayyab and Sarkar [13] Direct fuzzy weighting Interactive weighted FGP v
Karamasa et al., [14] SAW ROV X
Rahman et al., [15] SWARA WASPAS X
Ulutas et al., [16] Grey Best-Worst Method Grey Weighted Sum-Product v
Dinh et al., [17] NA Association Rule Mining X
Lin et al., [18] Fuzzy Delphi method Fuzzy DEMATEL v
Sheikh et al., [19] Fuzzy AHP Fuzzy AHP v
This study Fuzzy OPA Fuzzy RAFSI v

ROV: Range of Value Method, TOPSIS: Technique for Order of Preference by Similarity to Ideal Solution, MACBETH: Measuring Attractiveness by a
Categorical Based Evaluation Technique, AHP: Analytic Hierarchy Process, DEMATEL: Decision-Making Trial and Evaluation Laboratory, WASPAS:
Weighted Aggregated Sum Product Assessment, ELECTRE: Elimination and Choice Translating Reality, FGP: Fuzzy Goal Programming

The concept of fuzziness is applied in many fields to address uncertainty in evaluations, and it has
been particularly beneficial in decision-making processes in industries like textiles. Methods such as
the AHP and the TOPSIS have been widely adopted, both in their standard forms and in variations
that incorporate fuzzy logic. Wang and Cheng proposed a comprehensive multicriteria decision-
making model specifically designed for the garment industry that integrates sustainability
considerations. Their approach combines fuzzy AHP for criteria weighting with the TOPSIS for supplier
evaluation [11]. Glindiiz and Simsek Glindiiz addressed the inherent fuzziness in decision-making by
applying fuzzy set theory to supplier selection for a textile manufacturer in Denizli. Their work
emphasizes the value of expressing criteria ratings and weights through linguistic variables,
culminating in a closeness coefficient calculation that enables effective supplier performance ranking
using Fuzzy TOPSIS [10].

Recent literature reveals a growing emphasis on incorporating sustainability and resilience
considerations into textile supply chain management frameworks. Guo et al., [8] specifically focused
on green supplier evaluation in global apparel manufacturing by developing a methodological
framework based on the triple bottom line principle. Their approach incorporated comprehensive
literature review, field investigation, and policy analysis to establish a green supplier evaluation
criterion hierarchy, complemented by a fuzzy multi-criteria decision-making model [8]. Lin et al., [18]
made significant contributions by identifying six aspects and eighteen criteria related to supply chain
disruption and resilience strategy attributes. Their research employed both fuzzy Delphi and
DEMATEL methods, revealing that supply risk, flexible business strategies, and collaborative
strategies form causal factors, while human issues, transportation failure, and preventive resilience
strategies constitute effect factors. This comprehensive framework provides valuable guidance for
adapting to disturbances with minimal performance impact [18].

Overall, fuzzy multiple criteria decision-making methods have been widely recognized for their
effectiveness in evaluating suppliers within the textile industry. However, despite their extensive
application, there remains a noticeable gap in the literature regarding the use of less common fuzzy
techniques—such as the Fuzzy Ordinal Priority Approach (Fuzzy OPA) and the Ranking of Alternatives
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by Functional Mapping of Criteria Sub-Intervals to a Single Interval (RAFSI)—specifically within the
context of textile supplier evaluation.

3. The proposed methodology

This study presents a comprehensive, four-step supplier selection and order allocation
framework designed to optimize procurement decisions through a systematic analytical approach.
The proposed framework is illustrated in Figure 1.

4 N\ [ N\ [ )
Inputs Step 1: Identify Focus Product Groups Qutputs
Income Employ the two-tiered Pareto analysis to prioritize the Focus product
Volume strategic product groups groups
\_ A J
4 N\ A
Inputs D
Step 2: Determine evaluation criteria weights Qutputs
Criteria Employ fuzzy OZ?i?e::o:rtoeS:ltf;?;:: criteria weights The weights of
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________________________________ 1
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;..Afge::, and apply fuzzy RAFSI to calculate overall performance each supplier
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r \ ( A
Inputs Qutputs
Step 4: Allocate Orders Qutputs
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Availability assign orders to appropriate suppliers Allocations
\ Canmahilidto, ) \ ) \ )

Fig. 1. Proposed Supplier Selection and Order Allocation Framework

The proposed methodology integrates multiple decision-making techniques to address the
complex challenges faced by procurement professionals in today's dynamic supply chain
environment. Beginning with focus product group determination through two-tiered Pareto analysis,
the framework proceeds to develop a multi-criteria evaluation structure weighted via fuzzy OPA
method. Supplier performance is then evaluated using the fuzzy RAFSI method, generating
guantitative supplier scores that reflect organizational priorities. Finally, these scores are
incorporated into a mathematical optimization model that allocates orders across the supplier
portfolio while respecting capacity constraints and ensuring risk diversification. By combining multi-
criteria decision-making methods with advanced mathematical programming, this framework offers
procurement managers a robust, data-driven approach to subcontractor supplier selection that

balances performance objectives with operational constraints and strategic risk considerations.
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3.1 Two-tiered Pareto Analysis

The Pareto principle, also known as the "80-20 rule", originated from the research of Vilfredo
Pareto who investigated the imbalance of wealth distribution in Italy around 1906 and proposed a
statistical model with a continuous probability distribution of an unbounded random variable. He
proposed a statistical model based on a continuous probability distribution for an unbounded
random variable; however, since income distributions involve a finite population and discrete income
levels, the Pareto model can only serve as an approximation [20]. Nonetheless, if there exists a
probability distribution that satisfies the generalized 80/20 law, then it must be the Pareto
distribution with pareto index is greater than 1. The term "Pareto’s law" was first introduced by Juran,
who distinguished between the contributions of the "vital few" and the "trivial many" [20]. The
Pareto principle states that 80% of the effects of all events originate from 20% of the causes [21].

The first step of the proposed methodology involves employing Pareto Analysis to discern key
product categories for prioritizing improvement initiatives, highlighting significant impact of a limited
number of critical areas on overall outcomes. For pareto analysis, we use a two-phase approach: first,
broad categories are analyzed to identify high-impact product groupings, and then these groups are
broken down further to allow for thorough analysis and planning.

3.2 Fuzzy Ordinal Priority Approach

Several fuzzy multi-criteria decision-making methods have been proposed in the literature to
evaluate a countable number of criteria in the presence of uncertainty and imprecision [22]. The
broad spectrum of fuzzy sets employed in these methods provides the enrichment of mathematical
decision analysis framework that can represent uncertainty and imprecision, particularly in human
judgment.

In this study, we employed the Ordinal Priority Approach proposed by Ataei et al., [23], which
offers a promising foundation for methodological extensions in multi-criteria decision making. This
approach serves as the foundation for the criteria weighing mechanism in this study's comprehensive
supplier selection and order allocation framework. Several studies in the literature have enhanced
the OPA method by extending its application to various types of fuzzy sets [22, 24-27].

OPA Method, establishes a systematic group decision making approach where experts are first
prioritized based on their knowledge or experience in the respective field. Each expert provides a
ranking for attributes/ alternatives with the flexibility to provide input only in areas where they
possess sufficient knowledge. The main innovation of the approach lies in its mathematical
formulation: a deterministic linear programming model that simultaneously determines weights for
all decision elements without relying on traditional analytical requirements like normalization
processes, comparison matrices, or linguistic variable transformations [23].

The fuzzy trigonometric based OPA method proposed by Deveci et al., [22] has been employed
for weight determination, as it offers a more effective representation of uncertainty compared to the
crisp OPA [22].

The steps of fuzzy trigonometric based OPA are summarized as follows:

Letv; = {v1,V3,...., U, } define the set of criteria and E; = {E;,E;,..., Ep} define the set of experts.

Step 1. The linguistic terms included in Table 2 are used to gather expert evaluations.
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Table 2

Fuzzy terms for criteria assessments (Deveci et al.,, [22])
Linguistic terms Linguistic values of fuzzynumbers
High (H) (6.5,7.5,8.5)
Very high (VH) (7.5,8.5,9.5)
Absolutely High (AH) (8.5,9.0,10.0)
Medium-low (ML) (3.5,4.5,5.5)
Equal (E) (4.5,5.5,6.5)
Medium- high (MH) (5.5,6.5,7.5)
Low (L) (2.5,3.5,4.5)
Very low(VL) (1.5,2.5,3.5)
Absolutely low (AL) (1.0,1.5,2.5)

We construct the evaluation matrix A = [aij]nxm with @;; = (af;, aff, af}) fuzzy numbers.
Step 2. To aggregate the evaluations of experts, we employed a simplified formulation of fuzzy
weighted geometric average operator. B = [bi], the aggregated weight vector, is determined by

m m . m
L2 1—[ sinm (af;
Za--—arcsm ~m L ,

a;

j=1 j=1"ij

m
- 2 sinm (a;;
b; = Zag;arcmnl_[( (a ) ) (1)

j=1 =1 ] 1%ij
m m
Z v 2 1—[ <sm I (al-j)
aj; —arcsin —_
m U
T j=1%j

Step 3. The final ranking of the crlterla is descrlbed by W(,l),w(,z), ...,W( )where Wi 2 denotes the i'th

criterion assigned rth rank. To determine the weights of the criteria, the fuzzy linear programming model is
formulated as in Equations (2-13):

Max Q@) + o) 4 o) (2)
min b (3)
1<1<n ( Lr _ Ur+1) > ,Q(L)

1m_in bi M Mr+1 (4)
<1<n T ,r M
min bf (5)
1<1<n ( Ur _ WiL,r+1) > Q(U)
1mm bF : (6)
<1<nh T L
bU ( ) = ‘Q( )
1mln bF (7)
<I<n m,r
b—m(W )= o
L
min bf (8)

Zn: wi =08 (9)
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= (10)
Z wM =1.0
i=1
= (11)
Zw{’ =1.2
i=1
wi <wM <w/ (12)
whwM,wl >0 (13)

The objective function aims to maximize the sum of the lower, modal and upper bounds of
satisfaction levels which ensures a balanced adjustment of the fuzzy weights while encouraging a
consistent ranking across the fuzzy intervals. Equation (3) ensures that the lower bound of the weight
of the rth ranked criterion is greater than or equal to the upper bound of the next rank using a scaling
factor derived from the corresponding fuzzy Ei values. Equation (4) enforces that the modal value of
the weight for the rth ranked criterion is greater than or equal to the modal value of the criterion
ranked r + 1, thereby maintaining the consistency of the ranking in terms of central estimates.
Equation (5) ensures that the upper bound of the weight for a higher-ranked criterion is larger than
the lower bound of the next ranked criterion, preserving ordinal consistency across the fuzzy bounds.
Equations (6) — (8) ensure that the lower, modal, and upper bounds of each criterion’s weight meet
or exceed their respective satisfaction thresholds, using appropriate scaling factors derived from the
fuzzy boundary values. The sum of the lower, modal, and upper bounds of the criteria's weights is
normalized to 0.8, 1.0, and 1.2, respectively, in Equations (9) — (11). This ensures that the total
importance of each fuzzy range remains within predefined limits while maintaining consistency in the
aggregation of criteria. Equation (12) guarantees consistency in weight representation by maintaining
the logical order of fuzzy numbers for each criterion. All fuzzy weights elements are guaranteed to
be non-negative by Equation (13). Upon solving the fuzzy linear model in Equations (2)-(13), the
resulting fuzzy vector represents the weights assigned to each criterion.

3.3 Fuzzy RAFSI approach

A fuzzy trigonometric-based extension of the RAFSI model was proposed by Deveci et al., [22] to
address decision-making problems involving uncertainty. The steps of the method are presented in
this section.

Step 1. The linguistic evaluations are collected from a set of decision makers in respect to each
criterion and transformed into fuzzy values using Table 2 to construct the assessment matrix E of
decision maker .

Step 2. To aggregate the experts’ evaluations consistently, a simplified version of the fuzzy
weighted geometric average operator was utilized, as described in Equation 1. The aggregated

evaluation matrix C = [5ij]nxk is constructed, where n corresponds to the total number of criteria,

L M
ijr Cij

Step 3. The score matrix, denoted by S = [sl-j] , including the score values of each alternative

k to the number of evaluated alternatives and (c cg) to the fuzzy representation of ¢;;.

nxk
under each criterion are computed using the aggregated evaluation matrix, as specified in Equation

(14).

nxk

lciLj +4cfi + cf]’l
6 nxk

Step 4. Decision makers specify two values for each criterion: an ideal value (s;) and a non-ideal
value (s; ), ensuring that for benefit-type criteria, the ideal value surpasses the non-ideal value, and
for cost-type criteria, the ideal value is smaller than the non-ideal value. The RAFSI Method maps all
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entries of the matrix into criteria intervals into criterion-specific intervals using the range [s;, s;] for
benefit-type criteria and [s;, s; ] for cost-type criteria. The RAFSI method transforms all criteria into
a common interval by generating a sequence of values within a defined range. Depending on the
criterion's nature, the mapping is applied accordingly: for benefit-type criteria (i € B), the minimum
value is assigned to the lower bound and the maximum to the upper bound; for cost-type
criteria (i € C), the mapping is reversed to maintain consistency in the evaluation scale. After
determination of sub-intervals [p; p,,], the matrix S is standardized using transformation function
f, defined in Equation (15-16). represents the criteria range. This yields the standardized decision
matrix Y = [yl-j] following the application of the function to each element s;;.

(p1 < p2 <p3 < .o < Pay-1 < Pay (15)
P2n-P1 SiP1 — Si Pan
) = —— 1. + _—
f(sif) o — s Pu S —s; (16)

l

Step 5. The normalized decision matrix (Z = [Zij] ) is computed using the arithmetic mean (1)
for benefit-type criteria and the harmonic mean (1) for cost-type criteria using Equation (17).

}Zﬁ ifi €B

Z; = ,71] (17)
Z_ ifiec
2yij

where the normalized matrix's elements are displayed by z;; € [0, 1].
Step 6. The overall score R; for each alternative j is computed as the weighted sum of the
normalized scores z;; of each criterion i, as presented in Equation (18).

n
R] =2W12U (18)
i=1

3.4 Order allocation model

This section introduces a mixed-integer programming formulation for the order allocation model,
providing an effective quantitative method that incorporates both limitations on resources and
supplier overall rankings. This model focuses on solving the problem of assigning orders to the
schedules of subcontractor manufacturers. It considers parameters related to the suppliers’
capabilities and available capacities, considering their classification, category, supply management
division (SMD), and domain (e.g., gender-dependent).

In the proposed model, let I denote the set of orders, where each order is identified by an
indexi € I. The set ] represents the available suppliers or workshops, indexed by j € J. The
planning horizon is divided into a set of days T, with each day represented by t € T. For each
supplier j, a subset of feasible working days is defined as T;,t S T, indicating the specific days on
which that supplier j is available to process orders. Furthermore, for each order i, we define J; € | as
the subset of suppliers that are capable of processing order i, i.e., those for which the processing
time can be calculated, and the order is feasible to produce.

The parameters and decision variables are defined in Table 3. The processing time
d;; represents the number of days required to complete order i at supplier j, provided that supplier
J is eligible to process that order. It is computed as the ratio of the order’s demand quantity to the
supplier’s capacity and varies across suppliers. If supplier j is not eligible—due to mismatched
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technical requirements—d;; is undefined. For normalization purposes, parameter P is defined as an
upper bound on the total processing effort. Specifically, P represents the worst-case total processing
time, obtained by summing the maximum processing time for each order across all eligible suppliers.
It is used to normalize the second term of the objective function, ensuring comparability with the
first component.

Table 3
Notation
Parameters Definition
Wit binary parameter indicating whether supplier j is available to operate on day t
dij the processing time (in days) required to complete order i at supplier j
b; the earliest day on which order i can start production
i RAFSI score of supplier j
D; Due date of order i
P Total processing time
Decision
. Definition
Variables
Xij binary variables equal to 1 if order i is assigned to supplier j, and 0 otherwise.
vt binary variables equal to 1 if order i is being processed by supplier j on day t, and 0 otherwise.
Si start time of order i representing the day on which its production begins.
o} completion time of order i representing the day on which its production is finished.

The objective function of the proposed order-supplier assignment model, given in Equation (19),
balances two competing goals where the first term aims to maximize supplier quality by using the
RAFSI scores and the second term effectively minimizes completion times across all orders which is
normalized by total processing time to ensure proper scaling between the two objectives.

N M N MCi
Max erjxij _ZZF (19)

i=1 ]:1 i=1 ]:1
The constraints of the model are summarized as in the following.
Z xijp=1 Viel (20)
JEJi
Z Zyijt < Xij VtET (21)
i€l jej
T
Zy”t = dyx; VielLvj€eJ (22)
t=1
Si + Z dl-jxij < Ci Vie]l (23)
JeJi
C; < Di Viel (24)
s; = b; viel (25)
Yijt = Wj X Viel,VjeEJVLtET (26)
t+1-MA—-yje) < s+ dijxg; . .
Viel,VjeJVteT 27
t=s; —M(1— i) €] (27)
Yijeo xij € {0,1}, s;,¢c; € Z* VieELVjEJVtET (28)

333



Journal of Intelligent Decision Making and Granular Computing
Volume 1, Issue 1 (2025) 325-344

Equation (20) ensures that each order can be assigned to only one supplier. Constraint (21)
ensures that processing days align with supplier assignments by requiring that, for each period t,
orders are only processed by suppliers officially assigned to them. Constraint (22) guarantees that
the processing spans exactly the required number of days when a supplier is assigned. Equation (23)
defines the relationship between the completion time and the start time for each order, ensuring
that the completion time of an order accounts for its processing duration on the assigned supplier.
Equations (24) and (25) define the due date constraint and the ready date constraint for each order,
respectively, ensuring that production does not start before the order is ready and is completed no
later than its due date. Equation (26) imposes the supplier’s availability constraint, ensuring that each
order assigned to a supplier is scheduled only on days within that supplier’s availability. Equation (27)
ensures that the days on which an order is processed are limited to the designated start day and
carried out only on consecutive days. This is achieved by using the Big-M approach to maintain
consistency between the start and completion times of the processing days. Equation (28) provides
the definitions of the decision variables used in the model, including assignment and timing variables
essential for representing the planning process.

4. Application

Within the scope of the application of the proposed methodology, the supplier selection and
capacity planning problem of a clothing brand in Tiirkiye was examined. Effective capacity planning
directly influences quality, deadline performance, customer responsiveness, and overall satisfaction.

4.1 Application of Two-tiered Pareto Analysis

Strategic prioritization of high-impact product groups, based on metrics such as order frequency,
guantity, and diversity, plays a critical role in optimizing overall system efficiency. We applied a two-
tiered Pareto analysis to identify product categories and supply management strategies that most
significantly influence profitability, utilizing net profitability data as the primary input.

First, a Pareto analysis was performed on all supply management divisions (SMD). In the initial
stage of the Pareto analysis, five SMDs were chosen from the Men, Women, and Baby categories. In
the second stage of Pareto analysis, the selected 5 SMDs were divided into supply groups (with
classification details) and Pareto analysis was repeated. As a result, supply groups formed inside the
supply management sub-division.

100%
0%
] o 80% T a0%
- -
70% o 70%
50%
0%
0%
0%
20%

10%

%

(b)

Fig. 2. Two-tiered Pareto analysis: a) SMDs b) supply groups

Figure 2a illustrates the Pareto distribution of net profitability across main SMDs. The grey bars
represent individual category contributions, while the red cumulative line indicates the aggregated
percentage of total profitability. The analysis demonstrates that a limited number of categories—
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Men’s Casual, Women’s Casual, Women'’s Classic, Men’s Classic, Baby Boy —generate the majority
of the profitability, aligning with the Pareto principle. These high-impact categories should be
prioritized in supply chain and inventory management strategies to maximize overall system
efficiency. Figure 2b presents a more detailed, second-tier Pareto analysis across product
subcategories. The subcategories for Women’s Casual Shirts, Men’s Casual Pants, Men’s Cargo Pants,
Women’s Classic Shirts, Men’s Casual Shirts and Baby Boy Pants emerge as the most profitable.
Similar to the first-tier analysis, a small number of subcategories account for a disproportionately
high percentage of total profits.

As a result of the Pareto analysis calculations, key suppliers engaged in active contract
manufacturing within the supply chain have been identified as focal points. A total of 17 suppliers
will be considered in the subsequent analysis.

4.2 Application of Fuzzy Trigonometric OPA Method

In this study, the criteria were defined based on both a comprehensive review of relevant
literature and previous decision-making factors, supplemented by practical experience. In contract
manufacturing environments, supplier evaluation involves a range of criteria, including company
culture, working history, lessons learned from past issues, and findings from internal assessments
and research. Additional criteria derived from these insights have also been incorporated into the
model. Within the scope of supplier selection, 6 main criteria have been determined and classified in
accordance with quality performance, ability to produce different products, overtime capability,
reliability, economic incentives and supplier class.

The Repair Rate-Quality Performance metric (C1) measures production issues across daily,
weekly, monthly, seasonal, and annual bases. Organizations establish threshold values for this key
indicator, making it one of the most critical factors in supplier performance evaluation.
Responsiveness Criterion refers to a supplier's ability to react quickly and effectively to changing
demands, production challenges, and unexpected issues which can significantly impact on-time
delivery performance in textile manufacturing, particularly for subcontracted production.

The Flexibility - Ability to Produce Different Product Classifications metric (C2) refers to a supplier's
competence in manufacturing various product classifications. High-performance suppliers can
maintain consistent quality not only with basic products but also with complex or more detailed items
within the same classification. They demonstrate continuity by performing equally well when
assigned different product groups than their usual specialty.

The Flexibility —Overtime Capability metric (C3) demonstrates flexibility during tight periods such
as seasonal transitions, in-season order management, urgent holiday orders, and fast track
production strategies. Suppliers who readily accept these working conditions and view them as
teamwork are always preferred partners in the supply chain [28].

The Reliability metric (C4) refers to the track record of past collaborations and history of
successful partnerships. It assesses whether suppliers adhere to all applicable laws and regulations,
produce products that meet or exceed expectations, and maintain a disciplined work environment.

The Economic Incentives metric (C5) refers to the financial advantages suppliers receive based on
their geographical location within government-supported development zones. This metric assesses
how regional incentives influence a supplier’s cost structure, competitive pricing ability, and long-
term economic sustainability relative to suppliers in less-incentivized regions. Turkey is divided into
six development regions for investment incentives [29]. Region 1, the most developed, receives
minimal support, while incentives increase progressively through regions 2 to 5. Region 6, the least
developed, benefits from the most comprehensive support, including tax reductions and social
security contributions. Notably, key incentives such as interest rate subsidies are absent in regions 1
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and 2 but are available from region 3 onward. Likewise, the rates and durations of tax relief,
investment contribution, and employment incentives rise substantially toward region 6.

The Supplier Class & Risk Classification metric (C6) classifies suppliers into performance and risk-
based tiers (5-Star, Platinum, Gold, Silver, Conditional, and Risky-New) based on engagement
evaluations such as quality audits, social compliance, child labor checks, occupational health and
safety, disciplinary procedures and warehouse inspection results. These classifications offer a
preliminary insight into supplier reliability and maturity. This classification of suppliers enables a
better understanding and management of supply chain risk profiles, supporting informed sourcing
and collaboration decisions.

The comprehensive expert evaluations for each criterion evaluation are shown in Table 4, which
presents the expert opinions that serve as the basis for the supplier selection procedure.

Table 4
Input of 5 expert ratings for each criterion
Criteria Expert A ExpertB ExpertC ExpertD ExpertE

C1 AH AH VH H AH
c2 E ML AH H H
3 E ML AH H VH
4 VH H VH H E
s MH E MH H E
c6 L ML E VL ML

The aggregated values (b;), each criterion's final ranking (r;) and the fuzzy importance weights
W; are presented in Table 5.

Table 5
Findings from the application of fuzzy OPA Method
Criteria b; T w;

C1 (7.8539, 8.5777, 9.5801) 1 (0.2800,0.3066,0.4000)
c2 (5.6129, 6.5878, 7.6170) 4  (0.0986,0.1365,0.1599)
c3 (5.7745, 6.7533, 7.7869) 3 (0.1599,0.1870,0.2071)
4 (6.3882, 7.4051, 8.4174) 2 (0.2071,0.2424,0.2800)
c5 (5.2447, 6.2534, 7.2597) 5 (0.0544,0.0872,0.0986)
cé6 (2.8931, 3.9518, 4.9839) 6 (0.0000,0.0404,0.0544)

In this section, the weight values of six main criteria used in supplier selection were calculated:
Repair Rate - Quality Performance was identified as the most critical factor, reflecting its direct impact
on production efficiency and product standards. Reliability and Overtime Capability followed in
importance, emphasizing the need for consistent partnerships and operational flexibility under
pressure. Ability to Produce Different Product ranked fourth, highlighting the advantage of suppliers
capable of handling various classifications. Economic Incentives and Supplier Class & Risk
Classification, while still relevant, were given lower priority due to their more indirect influence on
immediate production outcomes. This prioritization framework aligns with both strategic objectives
and operational realities of contract manufacturing environments.

4.3 Application of Fuzzy Trigonometric RAFSI Method

Based on the Pareto analysis, key suppliers involved in active contract manufacturing within the
supply chain have been identified. Seventeen alternative suppliers have been identified, each with
their own advantages and disadvantages, operating in a sector without workforce-based automation.
The best supplier will be evaluated based on six criteria outlined in Section 4.2. The list of suppliers
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provided in Table 6 presents a comprehensive overview of the clothing supply chain structure,
categorizing seventeen suppliers across five main Supply Managements and their respective supply
groups. While these suppliers possess the capability to manufacture any product within their
designated product management segment, they demonstrate expertise and competence in the
specific supply groups mentioned in Table 6. This organization facilitates a clear understanding of
supplier distribution throughout the various clothing categories within the supply network.

Table 6

Supplier Distribution Based on SMDs and Supply Group Specializations

Supply Management Divisions Respective Supply Groups Suppliers

Baby Boy (BB) BB Pants (Denim,Woven) Supplier 1, Supplier 2
MC Shirt Supplier 3, Supplier 4

Men’s Casual (MC) MC Cargo Pant Supplier 5, Supplier 6
MC Pants Supplier 7

Men'’s Classic (MCL) MCL Chino Supplier 8, Supplier 9

WC Shirt
Women’s Casual (WC) "

WC Tunic, Shirt

Supplier 10, Supplier 11
Supplier 12, Supplier 13

Women’s Classic (WCL)

WCL Modelled Pants, Skirt
WCL Tunic,

Shirt

Supplier 14, Supplier 15
Supplier 16, Supplier 17

To support the systematic supplier evaluation process, Table 7 provides a comprehensive

collection of expert evaluations, with each possible supplier evaluated against all criteria.

Table 7

The linguistic assessments of 5 decision makers evaluating suppliers across six criteria
Suppliers C1 C2 C3
Supplier 1 H; VH; AH; H; VH E; VH; MH; H; E H; VH; AH; AH; VH
Supplier 2 H; VH; AH; H; VH AH; VH; AH; AH; VH ML; L; E; MH; E
Supplier 3 ML; E; MH; ML; E E; VH; MH; H; VH AL; VL; L; AL; VL
Supplier 4 H; VH; AH; H; VH E; VH; MH; H; E H; VH; AH; AH; VH
Supplier 5 H; VH; AH; H; VH E; VH; MH; H; E H; VH; AH; AH; VH
Supplier 6 H; VH; H; VH; VH H; VH; AH; H; VH H; VH; AH; AH; VH
Supplier 7 H; VH; AH; H; VH H; VH; AH; H; VH H; VH; AH; AH; VH
Supplier 8 H; VH; AH; H; VH AH; VH; AH; AH; VH ML; L; E; MH; E
Supplier 9 H; VH; AH; H; VH E; VH; MH; H; E H; VH; AH; AH; VH
Supplier 10 MH; ML; E; ML; E H; VH; AH; H; VH AL; VL; L; AL; VL
Supplier 11 E; MH; E; MH; ML H; VH; AH; H; VH ML; L; E; MH; E
Supplier 12 AH; H; VH; AH; H E; VH; MH; H; E H; VH; AH; AH; VH
Supplier 13 E; MH; E; MH; ML H; VH; AH; H; VH H; VH; AH; AH; VH
Supplier 14 H; VH; AH; H; VH H; VH; AH; H; VH ML; L; E; MH; E
Supplier 15 H; VH; AH; H; VH H; VH; AH; H; VH H; VH; AH; AH; VH
Supplier 16 AH; H; VH; AH; H E; VH; MH; H; E H; VH; AH; AH; VH
Supplier 17 E; MH; E; MH; ML E; VH; MH; H; E ML; L; E; MH; E
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Table 7
Continued

Suppliers

Cc4

C5

C6

Supplier 1
Supplier 2
Supplier 3
Supplier 4
Supplier 5
Supplier 6
Supplier 7
Supplier 8
Supplier 9
Supplier 10
Supplier 11
Supplier 12
Supplier 13
Supplier 14
Supplier 15
Supplier 16
Supplier 17

VH; AH; H; VH; AH
VH; AH; H; VH; AH
VH; AH; H; VH; AH
E; MH; E; MH; ML
VH; AH; H; VH; AH
VH; AH; H; VH; AH
VH; AH; H; VH; AH
L; E; MH; E; MH
E; MH; E; MH; ML
VH; AH; H; VH; AH
VH; AH; H; VH; AH
E; MH; E; MH; ML
L; E; MH; E; MH
VH; AH; H; VH; AH
VH; AH; H; VH; AH
VH; AH; H; VH; AH
VH; AH; H; VH; AH

H; VH; AH; AH; VH
ML; L; E; MH; E
L; VL; L; ML; VL

H; VH; AH; AH; VH

H; VH; AH; AH; VH

H; VH; AH; AH; VH

H; VH; AH; AH; VH

H; VH; AH; AH; VH

H; VH; AH; AH; VH
AL; VL; E; AL; VL
AL; VL; L; AL; VL

H; VH; AH; AH; VH

H; VH; AH; AH; VH
ML; L; E; MH; E
E; VL; AH; E; MH
ML; L; E; MH; E

VH; VH; AH; AH; VH

ML; E; E; ML; E
H; VH; AH; H; VH
H; VH; AH; H; VH
H; VH; AH; H; VH
H; VH; AH; H; VH
H; VH; AH; H; VH
ML; E; E; ML; E
H; VH; AH; H; VH
ML; E; E; ML; E
; VH; AH; H; VH
H; AH; H; VH
H; AH; H; VH
H; AH; H; VH
H; AH; H; VH
H; AH; H; VH
; VH; AH; H; VH
H; VH; AH; H; VH

’

’

H
H
H
H;
H
H
H

’

\
Vv
\'%
\'%
Vv

’

The aggregated evaluation matrix C is obtained, presented in Table 8, using fuzzy weighted

geometric average operator described in Equation (1).

Table 8

The aggregated evaluations of suppliers across six criteria

Suppliers C1 C2 C3 C4 C5 C6
Supplier 1 8.176 6.594 8.480 8.480 8.480 5.074
Supplier 2 8.176 8.796 4,984 8.480 4,984 8.176
Supplier 3 5.245 7.195 2.172 8.480 3.211 8.176
Supplier 4 8.176 6.594 8.480 5.645 8.480 8.176
Supplier 5 8.176 6.594 8.480 8.480 8.480 8.176
Supplier 6 8.084 8.176 8.480 8.480 8.480 8.176
Supplier 7 8.176 8.176 8.480 8.480 8.480 5.074
Supplier 8 8.176 8.796 4.984 5.364 8.480 8.176
Supplier 9 8.176 6.594 8.480 5.645 8.480 5.074
Supplier 10 5.245 8.176 2.172 8.480 2.365 8.176
Supplier 11 5.645 8.176 4,984 8.480 2.172 8.176
Supplier 12 8.270 6.594 8.480 5.645 8.480 8.176
Supplier 13 5.645 8.176 8.480 5.364 8.480 8.176
Supplier 14 8.176 8.176 4.984 8.480 4,984 8.176
Supplier 15 8.176 8.176 8.480 8.480 5.335 8.176
Supplier 16 8.270 6.594 8.480 8.480 4,984 8.176
Supplier 17 5.645 6.594 4,984 8.480 8.696 8.176

Table 9 displays the score matrix together with the related ideal and non-ideal values.
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Table 9

The score matrix, ideal and non-ideal values for each criterion

Suppliers C1 C2 C3 C4 C5 C6
Supplier 1 8.176 6.594 8.480 8.480 8.480 5.074
Supplier 2 8.176 8.796 4.984 8.480 4,984 8.176
Supplier 3 5.245 7.195 2.172 8.480 3.211 8.176
Supplier 4 8.176 6.594 8.480 5.645 8.480 8.176
Supplier 5 8.176 6.594 8.480 8.480 8.480 8.176
Supplier 6 8.084 8.176 8.480 8.480 8.480 8.176
Supplier 7 8.176 8.176 8.480 8.480 8.480 5.074
Supplier 8 8.176 8.796 4,984 5.364 8.480 8.176
Supplier 9 8.176 6.594 8.480 5.645 8.480 5.074
Supplier 10 5.245 8.176 2.172 8.480 2.365 8.176
Supplier 11 5.645 8.176 4.984 8.480 2.172 8.176
Supplier 12 8.270 6.594 8.480 5.645 8.480 8.176
Supplier 13 5.645 8.176 8.480 5.364 8.480 8.176
Supplier 14 8.176 8.176 4.984 8.480 4.984 8.176
Supplier 15 8.176 8.176 8.480 8.480 5.335 8.176
Supplier 16 8.270 6.594 8.480 8.480 4,984 8.176
Supplier 17 5.645 6.594 4,984 8.480 8.696 8.176
Ideal 8.270 8.796 8.480 8.480 8.696 8.176
Non-ideal 5.245 6.594 2.172 5.364 2.172 5.074

Table 10 shows the normalized decision matrix, derived by Equation (17), which normalizes the
assessment scores to allow for proper comparisons across all criteria and alternatives in the supplier
selection process. R; values were calculated using Equation (18).

Table 10
Normalized decision matrix and Rj

Suppliers Cc1 C2 Cc3 c4 C5 Ccé6 R;

Supplier 1 0.460 0.428 0.401 0.462 0.407 0.617 0.446
Supplier 2 0.460 0.476 0.292 0.462 0.559 0.513 0.441
Supplier 3 0.388 0.441 0.204 0.462 0.690 0.513 0.407
Supplier 4 0.460 0.428 0.401 0.394 0.407 0.513 0.427
Supplier 5 0.460 0.428 0.401 0.462 0.407 0.513 0.443
Supplier 6 0.458 0.463 0.401 0.462 0.407 0.513 0.447
Supplier 7 0.460 0.463 0.401 0.462 0.407 0.617 0.451
Supplier 8 0.460 0.476 0.292 0.387 0.407 0.513 0.411
Supplier 9 0.460 0.428 0.401 0.394 0.407 0.617 0.430
Supplier 10 0.388 0.463 0.204 0.462 0.777 0.513 0.417
Supplier 11 0.398 0.463 0.292 0.462 0.800 0.513 0.438
Supplier 12 0.463 0.428 0.401 0.394 0.407 0.513 0.427
Supplier 13 0.398 0.463 0.401 0.387 0.407 0.513 0.409
Supplier 14 0.460 0.463 0.292 0.462 0.559 0.513 0.440
Supplier 15 0.460 0.463 0.401 0.462 0.539 0.513 0.458
Supplier 16 0.463 0.428 0.401 0.462 0.559 0.513 0.456
Supplier 17 0.398 0.428 0.292 0.462 0.400 0.513 0.402

Upon analysis of the results, the highest performing suppliers are S15 (0.458), S16 (0.456), and
S7 (0.451). These suppliers have demonstrated superior performance compared to others within the
established criteria framework. Mid-level performance is observed for suppliers S1 (0.446), S6
(0.447), S5 (0.443), and S2 (0.441), who also present competitive values. The lowest performing
suppliers are identified as S17 (0.402), S3 (0.407), and S13 (0.409).
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Overall, the relatively narrow range of total values (0.402-0.458) among suppliers indicates that
all suppliers meet a certain quality standard. This situation provides decision-makers with various
alternatives for strategic supplier selection. This study makes a significant contribution to rational
and evidence-based decision-making processes in supply chain management.

4.4 Application of Order Allocation Model

In this study, a mixed integer linear programming model has been developed to optimize the
assignment of orders to suitable suppliers and the timing of production processes to improve supply
chain management in the textile industry. The model has a very detailed structure that considers the
multidimensional fit between supplier and product features, capacity constraints, production times
and delivery dates.

The main purpose of the proposed model is twofold: on the one hand, to maximize the RAFSI
performance scores of suppliers and to make a quality-oriented assignment; on the other hand, to
increase the total production efficiency by minimizing completion times of orders. In this way, both
the use of high-performance suppliers is increased, and the service level is increased by complying
with customer delivery times.

In the model, each order is allowed to be assigned to only one supplier, and a high level of match
is required between the assigned supplier and the order's production category, classification and
supplier domain. This emphasizes that quality compliance between the product and supplier is a
critical factor in improving supply chain performance and ensures quality product output.

The developed model also takes into account operational requirements such as daily production
capacity, supplier working days, order start time and order completion time. In particular, the start
date of each order cannot be earlier than the earliest start date, while the completion date must
definitely not exceed the delivery date. The model was implemented in Python (version 3.13.1) and
solved using the Gurobi Optimizer (version 12.0.1) via the Gurobipy interface. Assignment decisions
were modeled using binary variables, while scheduling decisions were represented with integer
variables. For the 20 orders considered in the first 15 days of the order allocation plan, the resulting
schedule is illustrated in Figure 3.
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Fig. 3. Order allocation with assigned suppliers and due dates

Figure 3 shows the supplier to which each order was assigned as a result of the optimization
model, the start and end days of production, delivery dates, processing time and the RAFSI scores of
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the relevant supplier. According to the solution results, each order was assigned to the suppliers that
were found most suitable for it and had high RAFSI scores, and the production times were planned
to be completed before the delivery dates.

8770
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Manual Planning

X

8.760

Total RAFSI Score

Order Allocation Model
8735 Time: 1.718

8750 wesss @
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> Manual Planning @ Order Allocation Model
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Total Completion Time

Fig. 4. Order allocation model and manual planning: A comparison of Pareto

As shown in Figure 4, to evaluate the accuracy and effectiveness of the model, the objective
function value obtained from the developed optimization model was compared with that derived
from the traditional manual planning method. The objective function value calculated from manual
planning was 6.8948, whereas the output of the mathematical model was 7.0330. These results
indicate that the developed model provides higher efficiency and quality in the planning process and,
in addition, generates direct outputs in accordance with all constraints and objectives without the
need for individual manual control.

The model achieved approximately 2.0% better performance compared to the manual method
by optimizing order-to-supplier assignments, production scheduling, and resource utilization. Thus,
it has been demonstrated that the model can serve as an important tool for improving operational
efficiency and supporting decision-making systems.

Furthermore, it has been observed that the model provides a significant performance
improvement compared to manual assignment methods, particularly in cases where order and
supplier diversity is high. In conclusion, this optimization model is presented as a powerful tool that
systematically and efficiently manages order allocation in the textile industry.

5. Managerial Insights

In today's increasingly competitive business environment, organizations are forced to make rapid
decisions, while the accuracy and timeliness of these decisions remain critically important. Businesses
often must make decisions that attempt to achieve multiple, sometimes conflicting objectives
simultaneously [30,31]. Tactical decisions, such as contractor or supplier selection, carry significant
strategic implications for organizational performance. When these decisions are aligned with a
broader strategic viewpoint, they contribute more effectively to long-term goals. Integrating
scientific and data-driven methods into the supplier selection process empowers managers with
objective criteria, leading to more informed, consistent, and impactful decisions that enhance
operational efficiency and competitive advantage.

By using Pareto analysis, managers can prioritize high-impact problems, ensuring that resources
are allocated to areas that will yield the greatest return. It also supports strategic focus on high-profit
product groups, enabling more informed decision-making and efficient performance improvement.
By incorporating multiple criteria in the evaluation process and using holistic approaches in
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assessment of factors including production flexibility, overtime capability, quality, reliability, and the
optimization of subjective judgments through mathematical models help managers make more
informed decisions [32]. The use of fuzzy OPA in determining criteria weights successfully combines
subjective expert opinions with mathematical consistency. This represents a successful adaptation of
OPA's fuzzy extension to the textile industry [22,23].

From a managerial perspective, a striking insight is the digitalization and automation of decision-
making processes. It is critically important to integrate computer-aided systems into decision
processes, develop structures that work in conjunction with performance evaluation systems, and
design processes that save labour and time. This transformation allows managers to devote more
time to strategic issues while increasing operational efficiency.

6. Conclusions

This study addresses the supplier selection problem for a textile company engaged in contract
manufacturing. The company works with suppliers based on product group specifications and
characteristics for its manufacturing needs. Following an initial Pareto analysis, the study proceeded
with 17 suppliers. The effectiveness of the methodology is demonstrated by the consistency between
mathematically determined supply groups and those having the largest supplier pool and highest
loading volume across the company.

6 main criteria were considered for supplier selection, identified through comprehensive
literature review and practical experience. The study presents a new fuzzy logic-based methodology
for data-driven supplier selection in the textile industry. This model provides decision-makers with
objective criteria weights and dynamic ranking capabilities, conferring competitive advantages. Fuzzy
OPA and RAFSI methods were employed, and supplier evaluation results were analyzed.

Supplier S15 achieved the highest score, largely due to its superior quality and flexible working
principles. Conversely, supplier S17 ranked lowest, indicating opportunities for improvement in
quality and flexibility domains.

The study aimed to implement a more systematic approach within the company using numerical
data and scientific methods to analyze these data. Transforming this model into a computer-aided
system that integrates with the company's performance evaluation system would both expedite the
supplier selection process and reduce labor time expenditure.

These results have supported the modeling of placement decisions under specific constraints and
have facilitated optimized outcomes.

The study is limited to 17 suppliers of a single company. However, as it encompasses suppliers
from different geographical regions, various product types, and different supply management
approaches, the findings can be generalized across supply management contexts.

The model is easily adaptable under different supplier profiles, order types and operational
conditions and is suitable for use as a strategic decision support system. Future studies aim to
develop more flexible versions where new orders arrive in a dynamic environment; capacities may
change during production or supplier performances may be updated over time.
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