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As the main energy source in China, coal holds an irreplaceable position in 
ensuring the country's energy security and supporting economic and social 
development. However, as the intensity and depth of mining continue to 
increase, especially in mines with complex geological conditions, improper 
mining processes and strength design can easily trigger various geological 
disasters. In the context of the digital intelligence era, the efficient acquisition, 
rapid management, and precise retrieval of multimodal information provide 
key technical support for cross-modal information retrieval and visual 
analysis applications. Based on this, this manuscript proposes a mining 
disaster risk monitoring method that integrates topic model retrieval 
technology. First, analysing the retrieval principles and adaptation 
mechanisms of the topic model in the context of mining engineering disaster 
scenarios; Secondly, based on topic model retrieval technology, visualising 
disaster accidents and conducting heat analysis. Thereby, carrying out 
dynamic regulation and decision-making for mine disaster risks; Finally, 
based on the above dual research findings, achieving precise monitoring and 
reliable prediction of various types of mining disaster risks. 
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1. Introduction 

China, the globe’s foremost energy producer and user, has for decades treated coal as the 
dominant fuel in its energy mix. During 2024, China's coal  yielded 4.78 billion metric tons of standard 
coal, accounting for 95.9% of the total primary energy production. During the same period, coal 
consumption was 3.17 billion tons of standard coal, accounting for 53.2% of total energy 
consumption, continuing to hold the top position in the energy structure [1]. Therefore, as the main 
energy source in China, coal remains indispensable for safeguarding the nation’s energy security and 
supporting economic and social development [2, 3]. In the past decade, although China’s energy mix 
has undergone steady upgrading, with the share of coal use progressively declining in total energy 
consumption has generally shown a slow downward trend. But both raw coal production and 
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consumption have continued to grow [4] (Figure 1). According to relevant statistics, by 2050, coal is 
projected to continue supplying roughly half of the China’s total primary energy demand. 

 

 
Fig. 1. Structure of energy consumption in China, 2015-2024 

 
As extraction proceeds to greater depths and under higher stress, particularly in geologically 

intricate conditions, if the mining method and mining intensity are not properly designed, such 
conditions readily trigger a spectrum of mining-induced geohazards— tunnel deformation, mine 
water inrush, ground deformation, and induced landslides (Figure 2). The occurrence of the above-
mentioned disasters will result in significant casualties and property losses, and pose potential 
pollution risks to the groundwater environment in the mining area [5], seriously threatening mine 
safety production and ecological-environmental safeguarding within the extraction zone [6-9]. Thus, 
comprehensively utilizing new technologies for retrieving multi-source, multi-hazard data and 
carrying out dynamic monitoring of mine disaster risks is important to securing safe operations in 
mining areas and protecting the geological environment. It is a crucial demand for China's current 
mine safety and disaster prevention and mitigation efforts. 

 

 
Fig. 2. Geological disasters and underground incidents stemming from overburden deformation 

 
In recent years, as China has tightened oversight of safe mining and rolled out pervasive digital 

and smart technologies for extraction and hazard control, both the frequency and lethality of mining-
related incidents have been markedly curbed. Against the backdrop of the era of digital intelligence, 
the efficient acquisition, rapid management, and precise retrieval of multimodal information provide 
key technical support for cross-modal information retrieval and visual analysis applications[10]. It 
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continuously promotes in-depth research on multimodal information retrieval technology by 
scholars at home and abroad, and expands its application into the study of mine disaster prevention 
and control. Table 1 provides an overview of the development stages and characteristics of 
multimodal information retrieval technology. 

 
Table 1 
Development Characteristics of Multimodal Information Retrieval Technology [11, 12] 

Time 
nodes 

Core features of technological 
development 

Application connections in the field of 
mining disasters 

Key supporting 
technologies 

1960s-
1970s 

1. At this stage, research on multimodal 
technology is just beginning, mainly 
focusing on multi-source data fusion, 
feature analysis, and similarity retrieval; 
2. The scope of research is gradually 
expanding to the fields of speech 
recognition and synthesis. 

1. The technology is in the early 
accumulation stage and has not been 
directly applied to mine disaster 
prevention and control; 
2. The underlying logic of data fusion 
and feature analysis provides a 
theoretical reference for the 
subsequent processing of multi-source 
mine monitoring data. 

1. Traditional 
signal processing 
techniques; 
2. Early machine 
learning 
algorithms. 

Early 
21st 
century-
2010 

1. In this stage, big data and cloud 
computing technologies have emerged, 
breaking through the computational 
bottleneck of large-scale data analysis 
and complex model training; 
2. Multimodal technology has achieved 
leapfrog development, with the capability 
to initially handle high-dimensional data. 

1. Technology began to extend into 
the field of engineering; 
2. Pilot studies were conducted, 
starting with the use of the technology 
for preliminary retrieval of monitoring 
data for single-type mine disasters 
such as surrounding rock strain. 

1. Distributed 
cloud computing 
architecture; 
2. Classic 
machine learning 
models (SVM, K-
Means). 

2010-
Present 

1. At this stage, the technology is 
becoming increasingly mature, forming a 
technical system for high-dimensional 
heterogeneous data adaptation, cross-
modal precise matching, and real-time 
retrieval and analysis; 
2. Algorithms such as sparse 
representation and locality-sensitive 
hashing are deeply integrated with 
multimodal technology, improving 
retrieval efficiency and robustness. 

1. With its advantage in adapting to 
high-dimensional data, it has gained 
wide attention in the field of mine 
disaster data retrieval; 
2. It is applied to disaster risk 
monitoring and similar case matching 
for tunnel deformation, mine water 
inrush, surface subsidence, and 
induced landslides, becoming a key 
technological support for mine 
disaster prevention and mitigation. 

1. Deep learning 
algorithms; 
2. SR-DL; 
3. LSH. 

Note: Support Vector Machine (SVM), K-Means Clustering Algorithm (K-Means), Sparse Representation and Dictionary 
Learning Method (SR-DL method), Locality-Sensitive Hashing (LSH) 

 
2. Mine Disaster Data and Retrieval Technology 
2.1 Disaster Data 

Mine disaster data refers to the collection of structured and unstructured information that can 
be collected, stored, analyzed, and applied, encompassing the entire process related to the 
formation, occurrence, development, evolution, and prevention of various mine disasters 
throughout the entire lifecycle of mine exploration, construction, production, and closure. Through 
mining, modeling, and validating full-cycle monitoring data of mine disasters, the mechanisms of 
disaster formation, evolution patterns, and influencing factors can be revealed. This will enhance the 
precise management of disaster risks, the timeliness of early warnings, and the scientific nature of 
emergency response, achieving the greatest possible reduction in the occurrence and impact of 
mining disasters. 
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Mining disasters have typical characteristics such as high frequency, multiple types, wide impact, 
and secondary chain effects. And data on such disasters exhibit multi-dimensional, spatiotemporal, 
and dynamic evolutionary characteristics, which resulted in the traditional data retrieval paradigm 
facing application bottlenecks such as 'incomplete search, inaccurate retrieval, and slow response' 
during use. The above data characteristics indirectly determine that the in-depth processing and 
value extraction of disaster information require the introduction of interdisciplinary approaches and 
advanced data retrieval technologies to achieve a high-fidelity representation of disaster scenarios 
and efficient reuse of data resources. Thereby supporting a synergistic improvement in the accuracy, 
timeliness, and robustness of mine disaster prediction, early warning, and emergency response. To 
this end, the manuscript systematically reviews the adaptation principles and application paths of 
three retrieval methods, which are Convolutional Neural Networks (CNN), LSH, and SR-DL methods 
in the field of mining disasters, aiming to provide a methodological reference for the efficient 
retrieval and intelligent application of big data in mining disasters. 

 
2.2 Retrieval Technology 
2.2.1 CNN 

CNN, as a classic feedforward architecture in deep learning, focuses on convolution operations 
and can quickly uncover deep patterns or structures in images, text, and other data. And it can enable 
automatic extraction of key features from large-scale data, which can significantly improve the 
efficiency and accuracy of data retrieval. Figure 3 shows the development history of convolutional 
networks. 
 

 
Fig. 3. Development history of convolutional networks 

 
In image retrieval, CNN can accurately recognize different visual modalities such as objects, 

scenes, and faces. In text retrieval, it can efficiently identify high-level semantic features such as 
keywords, topics, and syntactic structures. These advantages give it significant strengths in the deep 
representation of complex heterogeneous data and the mining of hidden correlations. CNN perform 
local perception and weight-sharing operations on input data through their unique convolutional 
layers, its classification accuracy higher than most early shallow neural network models. Convolution 
operation serves as the basis for feature extraction, and its operation formula is: 𝑁 = (𝑊 − 𝐹 +
2𝑃)/𝑆 + 1, where 𝑊 is the input, 𝐹 is the convolution kernel, 𝑃 is the padding, and 𝑆 is the stride. 
When performing convolution output, the convolution output formula as Eq (1): 
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𝑌[𝑖, 𝑗, 𝑘] = 𝜎(∑𝑎=0
𝐻−1∑𝑏=0

𝑊−1∑𝑐=0
𝐶−1𝑋[𝑖 + 𝑎, 𝑗 + 𝑏, 𝑐] ⋅ 𝑊[𝑎, 𝑏, 𝑐, 𝑘] + 𝑏[𝑘])                                             (1) 

where, 𝑌[𝑖, 𝑗, 𝑘] is the value at position (𝑖, 𝑗) of channel 𝑘 in the output feature map; 𝜎 is the 
activation function, usually ReLU (Rectified Linear Unit) or another nonlinear activation function; 𝐻 
and 𝑊 are the height and width of the convolution kernel; 𝐶 is the number of channels in the input 
feature map; 𝑋[𝑖 + 𝑎, 𝑗 + 𝑏, 𝑐] is the value at position (𝑖 + 𝑎, 𝑗 + 𝑏) of channel 𝑐 in the input feature 
map; 𝑊[𝑎, 𝑏, 𝑐, 𝑘]  are the parameters of the convolution kernel; 𝑏[𝑘]  is the bias term. In the 
convolution operation, after the input feature map undergoes element-wise multiplication and 
accumulation with the convolution kernel, a nonlinear mapping is completed through an activation 
function. Thereby, it generates the response values at each spatial position in the output feature map 
and completes the convolution output. 

Based on CNN, feature extraction can be performed, and mapping can be completed in the 
feature space. This enables CNN to achieve good performance in image retrieval. Therefore, CNN 
serves a pivotal function in the processing of various types of geological disaster monitoring data. 
With the exponential increase in disaster data volume, and CNN mostly applied to static spatial data, 
a single frameworks now fall short of coping with the volatile and intricate requirements posed by 
disaster-related data processing. Thus, there is an urgent need to carry out data processing and 
analysis by introducing multimodal fusion methods. Against this background, LSH and SR-DL method 
have been widely applied in data retrieval and processing due to their ability to handle multimodal 
data and their simplicity and flexibility. 

 
2.2.2 LSH 

The LSH is an advanced optimization of the hashing method. Compared to the hashing method, 
this approach can effectively ensure that similar data have the same or similar hash values in the 
hash space. It addresses the challenge of similarity search for high-dimensional mining disaster data, 
such as distributed fiber optic strain monitoring data. Unlike the 'random mapping' of traditional 
hashing, for the similarity retrieval needs of distributed fiber optic strain monitoring data in mining 
disasters, LSH designs specific hash functions such as cosine distance hashing and Euclidean distance 
hashing [13-15]. This allows disaster data with similar features to be mapped into the identical hash 
bucket alongside high probability, significantly reducing the number of retrieval comparisons. The 
implementation process of this method is shown in Figure 4. 

 

 
Fig. 4. Application Process of LSH in Multidimensional Data Retrieval for Mine Disasters 

 
Cosine distance (adapted for directional similarity in high-dimensional data) is employed to 

quantify the angular congruence of a pair of high-dimensional vectors. It is suitable for monitoring 
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scenarios in mine data, such as changes in surrounding rock strain over different time periods, where 
the 'trends are similar but the magnitudes differ.' For high-dimensional monitoring data vectors 
𝑥，𝑦 ∈ 𝑅𝑑, randomly generate a hyperplane normal vector 𝑟 ∈ 𝑅𝑑 (with vector elements following 
the standard normal distribution 𝑁 (0, 1)), The hash function as Eq (2): 

$$ℎ𝑟(𝑥) = 𝑠𝑖𝑔𝑛(𝑟 · 𝑥) = {
1，𝑟. 𝑥 ≥ 0
−1，𝑟. 𝑥 < 0

$                                                                                         (2) 

where 𝑟. 𝑥 represents the dot product of vectors, and 𝑠𝑖𝑔𝑛(·) is the sign function. 
If the angle between two vectors 𝑥，𝑦 is 𝜃, then the probability that the vectors map to the same 
hash value as Eq (3): 

𝑃𝑟[ℎ𝑟(𝑥) = ℎ𝑟(𝑦)] = 1 −
𝜃

𝜋
                                                                                                                        (3) 

where the smaller 𝜃 is, the more similar the data are, the higher the probability that the hash values 
will be the same, and the easier it is to map the clustering of similar data. 
Therefore, in practical applications, it is possible to quickly match cases similar to real-time 
monitoring data from a vast amount of historical disaster data, thereby assisting disaster warning 
decisions. 
Euclidean distance (suitable for high-dimensional data with similar numerical values) is used to 
measure the numerical differences between two high-dimensional vectors. It applies to monitoring 
scenarios in mining data where measurements in the same area, such as gas concentration 
monitoring sequences, have 'similar magnitude and trends'. For high-dimensional monitoring data 
vector 𝑥 ∈ 𝑅𝑑, construct a linear hash function as Eq (4): 

ℎ𝑎,𝑏(𝑥) = [
𝑎∙𝑥+𝑏

𝑤
]                                                                                                  (4) 

where, 𝑎 ∈ 𝑅𝑑 is a random vector following the standard normal distribution 𝑁 (0, 1); 𝑏 ∈ [0, 𝑤] is 
a random offset, following a uniform distribution; 𝑤 is the bucket width parameter, which needs to 
be adjusted according to the data distribution; [∙]  denotes the floor function. The smaller the 
Euclidean distance ‖𝑥 − 𝑦‖2  between vectors 𝑥，𝑦 , the higher the probability that ℎ𝑎,𝑏(𝑥) =
ℎ𝑎,𝑏(𝑦), increasing the probability that akin data entries will be mapped to an identical hash bucket. 
 
2.2.3 SR-DL method 

The SR-DL method addresses the inherent characteristics of mining disaster data, which are 
multidimensional, highly noisy, and multimodally heterogeneous. By constructing a sparse dictionary 
that is deeply adapted to the disaster data, it achieves efficient compression and accurate retrieval 
of the target data. Given that mine monitoring data generally contains sensor noise and 
environmental interference signals, sparse representation can significantly improve the robustness 
of the retrieval process by eliminating redundant noise and preserving the core features of disasters. 
At the same time, it can effectively integrate distributed fiber optic strain monitoring data, formation 
lithology parameters, and in-situ stress distribution data to construct a multimodal joint sparse 
dictionary, thereby addressing the challenge of unified retrieval of heterogeneous data. In addition, 
this method can simultaneously perform disaster information feature extraction while achieving data 
dimensionality reduction and compression, without the need for additional dimensionality reduction 
preprocessing steps. Thereby it can boost system-wide data-processing performance substantially. 
The implementation process of the method is shown in Figure 5. 
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Fig. 5. Workflow of SR-DL method for Mine Disaster Data Retrieval 

 
When using this method in practical monitoring, historical disaster data is usually used as training 

samples. Through classical dictionary learning algorithms such as K-SVD, an overcomplete sparse 
dictionary is trained, where the atoms in the dictionary correspond to typical features of mining 
disaster data. For example, the sudden change characteristics of strain before the roof collapse and 
the concentration fluctuation characteristics of gas outbursts, the K-SVD dictionary update iteration 
as Eq (5): 

𝐸𝑘 = 𝑌 − ∑ 𝑑𝑗𝑎
𝑗𝑈𝛴𝑉𝑇 = 𝑆𝑉𝐷(𝐸𝑘𝛺𝑘)𝑑𝑘 = 𝑢1，𝑎𝑘 = 𝜎1𝑣1

𝑇
𝑗≠𝑘                                  (5) 

where, 𝑆𝑉𝐷 stands for Singular Value Decomposition; 𝐸𝑘 is the reconstruction error matrix after 
removing the 𝑘 atom; 𝛺𝑘 is the index matrix of nonzero coefficients; 𝑑𝑘 is the dictionary atom; 𝑢1, 

𝜎1, 𝑣1  are the left singular vector, the largest singular value, and the right singular vector from the 

𝑆𝑉𝐷 , respectively; 𝑎𝑘  is the row vector of encoding coefficients corresponding to the dictionary 
atom. 

For the retrieved fiber optic strain monitoring data 𝑦 ∈ 𝑅𝑑, it is transformed into a coded vector 
containing only a few non-zero coefficients through sparse representation on a predefined 

dictionary—the non-zero coefficients correspond to atoms. By further calculating the similarity 
between this encoded vector and the encoded vectors of historical disaster data, rapid matching of 
similar historical disaster cases can be achieved. This provides an efficient solution for mine disaster 
retrieval tasks. The optimization objective of sparse coding (L1 regularization, noise resistance) is 
given by Eq (6): 

𝑚𝑖𝑛𝛼‖𝛼‖1𝑠. 𝑡.      ‖𝑦 − 𝐷𝛼‖2
2 ≤ 𝜀                                                       (6) 

where, ‖𝛼‖1 is the L1 norm, which promotes sparsity in the coding vector; 𝜀 is the reconstruction 
error tolerance, used to filter out interference caused by sensor noise. 

The similarity matching as Eq (7): 

𝑠𝑖𝑚(𝛼𝑛𝑒𝑤，𝛼𝑖) =
𝛼𝑛𝑒𝑤∙𝛼𝑖

‖𝛼𝑛𝑒𝑤‖2‖𝛼𝑖‖2
                                                                                                       (7) 

where, 𝛼𝑛𝑒𝑤  is the encoding vector of the new data; {𝛼𝑖}𝑖=1
𝑛  is the set of encoding vectors of 

historical disaster data. The closer the calculated similarity value is to 1, the greater the alignment 
between the disaster profiles of the two datasets. 
 
3. Case Analysis of Mine Disaster Incidents 

The particularly serious collapse accident of the Alxa Xinjing open-pit coal mine in Inner Mongolia 
Autonomous Region of China occurred on February 22, 2023 (Figure 6). The investigation results of 
the accident showed that in the early morning of the day of the accident, a small area of landslide 
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had occurred on the west side and the top of the accident location. And it generates precursors of 
collapse, such as the expansion of cracks on the slope and at the bottom, and dust emission. In 
addition, the continuous high-intensity stripping operations at the bottom of the mining area have 
continuously reduced the stability of the slope. This has left the slope in an unstable state. The 
stripping and mining disturbance, combined with the over-boundary dumping, further aggravates 
the development of faults and joint fissures. Ultimately, it triggered a large-scale landslide and 
collapse of the side-hill rock mass along the fault and joint planes, and caused significant casualties 
and enormous economic losses. 

 

 
Fig. 6. Scene of the open-pit coal mine collapse in Alxa Left Banner, Alxa League, Inner Mongolia 

 
3.1 Research Process of Collapse Disaster Data 

Taking "Inner Mongolia coal mine collapse" as the keyword, the manuscript uses crawler 
technology to obtain a total of 5829 disaster text data from Sina Weibo about the "2·22" open-pit 
coal mine collapse accident in Alxa, Inner Mongolia, in 2023. Combined with the LDA (late Dirichlet 
allocation) model (Figure 7) [16-18], the text data is subject classified and visually displayed. Aiming 
to provide real-time dynamic information support for mine disaster risk monitoring. The research 
process covers four modules: data collection and preprocessing, word frequency statistics, LDA 
model classification and word cloud result visualization. In the data collection phase, the hash 
method is selected to achieve rapid retrieval of similar content in Weibo, which significantly improves 
the efficiency of data collection. 

 
Fig. 7. Data processing flow diagram based on the LDA model 
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Given that Weibo data is dynamic and real-time, set it to be automatically crawled every 3 hours, 
with keywords and crawling intervals dynamically updated to ensure the timeliness of the collected 
data. In response to the common issue of multi-source heterogeneous differences in mine disaster 
data, the manuscript sequentially performs deduplication, missing value completion, and anomaly 
removal on the collected data to ensure its uniqueness and consistency. Subsequently, the Weibo 
data was processed with Chinese word segmentation, meaningless word filtering, and noise 
reduction [19]. The processed data can provide high reliability input for the follow-up LDA topic 
model and fast semantic clues for disaster research and rescue decision-making. 

After completing the data preprocessing, LDA topic model was employed to extract topic features 
and perform clustering on the text corpus. This process aimed to uncover latent topic information 
and categorized it into three topics: disaster site, disaster cause analysis, and disaster relief within 
disaster events. Concurrently, making use of word cloud visualization technology to map the three-
dimensional distribution of topics-words-heat distribution [20]. This reveals the public's focus of 
attention and the path of information dissemination, providing data support for emergency 
command and rescue decision-making in mining disasters (Figure 8). 

 
3.2 Analysis of Research Results on Collapse Disaster Data 
3.2.1 Visual analysis 

A word cloud uses words as its basic units and employs visual encoding in which the font size is 
proportional to word frequency, mapping high-dimensional word frequency vectors to low-
dimensional visual weights, thereby making thematic features instantly readable. Consequently, 
following the topic classification based on the LDA model, it needs to extract and conduct frequency 
statistics on the high-probability terms under each topic. Subsequently, the wordcloud engine is 
invoked to generate topic-specific word clouds. In these word clouds, the character size is 
monotonically positively correlated with the frequency of word occurrence, which means font size 
scales directly with term frequency. In these word clouds, the character size is monotonically 
positively correlated with the frequency of word occurrence, which means font size scales directly 
with term frequency. This reflects the greater weight of the term within the topic. This method 
intuitively presents the core semantics of each topic and the focus of public attention. It also provides 
technical support for analyzing the propagation patterns of disaster-related public opinion and the 
evolution trends of hotspots. 
 

 
Fig. 8. Disaster keyword cloud map 

 
As shown in Figure 8, in Theme 1, keywords such as 'dust,' 'subsidence,' and 'slip' are relatively 

larger in font size. This indicates that the topic mainly focuses on a direct description of the conditions 
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at the disaster site following the collapse at the Alxa open-pit coal mine. In Topic 2, keywords such 
as 'cause,' 'investigation,' and 'press conference' are larger in font, indicating that this topic focuses 
on investigating the causes and analyzing events after a disaster. In Topic 3, keywords such as 
'protection,' 'guidance,' and 'disposal' are highlighted, reflecting that this topic focuses on emergency 
rescue and response actions at disaster sites. 

 
3.2.2 Heat Analysis 

To further analyze the heat distribution of the 'Inner Mongolia coal mine collapse' disaster text 
data on the Weibo platform. The manuscript uses the number of comments, shares, and likes as 
proxy variables for heat, and conducts a comparative analysis of the top 10 heat data (Figure 9). 
Statistical data indicate that the top accounts for the three metrics are highly homogeneous, all 
centred around authoritative media such as 'CCTV News,' 'Red Star Video,' and 'People's Daily.' 
Among them, a single post by CCTV News reached peak numbers in comments (6,479), shares (2,766), 
and likes (18,219), making it the primary channel for information dissemination. From this, it can be 
seen that China's official mainstream media, leveraging high credibility and a large fan base, has 
significantly increased the public's understanding of disaster events. The above heat distribution not 
only quantifies the allocation of public attention, but also provides a calculable and reusable basis for 
decision-making in media selection for guiding public opinion during disasters, mobilizing post-
disaster relief, and disseminating disaster prevention and mitigation knowledge. 

 

  
(a) Top 10 Weibo comments                                    (b) Top 10 Weibo reposts 

 
(c) Top 10 Weibo likes 

Fig. 9. Weibo disaster data heat distribution 

 
In summary, word cloud visualization and heat analysis can transform the intensity of disasters, 

emergency measures, and rescue trajectories of coal mine collapses into a semantic map that is easy 
to interpret. This can provide a quantitative basis for the spatiotemporal optimization of rescue 
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forces and resources, thereby supporting post-disaster recovery and reconstruction of various mining 
engineering accidents. This approach can also be applied to the rapid assessment and emergency 
decision-making of other similar disasters, continuously contributing to the upgrade of mining 
engineering disaster risk management toward a data-driven and agile response model. 
 
3. Conclusions 

The manuscript focuses on the key issues of mine disaster risk monitoring, and based on topic 
model retrieval technology, it conducts research on the data retrieval of 'Inner Mongolia coal mine 
collapse' accidents through result visualization and keyword popularity analysis. Based on the 
retrieval results, dynamically monitor and precisely assess the risk of mining disaster accidents, and 
reach the following conclusions: 

(1) Systematically analyzed the development history and feature overview of topic model 
retrieval technology, and focused on reviewing the principles and application processes of retrieval 
methods such as CNN, LSH, and SR-DL method; 

(2) Based on crawler technology, relevant data on the '2·22' open-pit coal mine collapse accident 
in Alxa, Inner Mongolia, in 2023 were retrieved and analyzed. By taking the evolution process of 
disaster-related topics as the entry point, the distribution of the collapse accident disaster topics, 
development trends, and disaster effects was obtained, providing a scientific reference for the 
implementation of dynamic regulation strategies for mine disaster risks. 

(3) With the widespread application of technologies such as the Internet of Things, large models, 
and digital twins in the field of mining engineering, in the future, multi-source technologies including 
AI video intelligent monitoring can be integrated to build large models for disaster accident 
prediction from aspects such as risk point identification, risk level establishment, and disaster 
severity assessment, thereby achieving dynamic monitoring and precise evaluation of mining disaster 
risks. At the same time, massive accumulated fiber optic sensing data and online reviews from social 
media can be further utilized to continuously optimize the accuracy of model evaluations. Based on 
this, precise monitoring and reliable prediction of mining disaster risks can be achieved. It provides a 
scientific basis for safe mine operations and the prevention and control of disaster incidents. 
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