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increase, especially in mines with complex geological conditions, improper
mining processes and strength design can easily trigger various geological
disasters. In the context of the digital intelligence era, the efficient acquisition,
rapid management, and precise retrieval of multimodal information provide
key technical support for cross-modal information retrieval and visual
analysis applications. Based on this, this manuscript proposes a mining
disaster risk monitoring method that integrates topic model retrieval
technology. First, analysing the retrieval principles and adaptation
mechanisms of the topic model in the context of mining engineering disaster
scenarios; Secondly, based on topic model retrieval technology, visualising
disaster accidents and conducting heat analysis. Thereby, carrying out
dynamic regulation and decision-making for mine disaster risks; Finally,
based on the above dual research findings, achieving precise monitoring and
reliable prediction of various types of mining disaster risks.
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1. Introduction

China, the globe’s foremost energy producer and user, has for decades treated coal as the
dominant fuel in its energy mix. During 2024, China's coal yielded 4.78 billion metric tons of standard
coal, accounting for 95.9% of the total primary energy production. During the same period, coal
consumption was 3.17 billion tons of standard coal, accounting for 53.2% of total energy
consumption, continuing to hold the top position in the energy structure [1]. Therefore, as the main
energy source in China, coal remains indispensable for safeguarding the nation’s energy security and
supporting economic and social development [2, 3]. In the past decade, although China’s energy mix
has undergone steady upgrading, with the share of coal use progressively declining in total energy
consumption has generally shown a slow downward trend. But both raw coal production and
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consumption have continued to grow [4] (Figure 1). According to relevant statistics, by 2050, coal is
projected to continue supplying roughly half of the China’s total primary energy demand.
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Fig. 1. Structure of energy consumption in China, 2015-2024

As extraction proceeds to greater depths and under higher stress, particularly in geologically
intricate conditions, if the mining method and mining intensity are not properly designed, such
conditions readily trigger a spectrum of mining-induced geohazards— tunnel deformation, mine
water inrush, ground deformation, and induced landslides (Figure 2). The occurrence of the above-
mentioned disasters will result in significant casualties and property losses, and pose potential
pollution risks to the groundwater environment in the mining area [5], seriously threatening mine
safety production and ecological-environmental safeguarding within the extraction zone [6-9]. Thus,
comprehensively utilizing new technologies for retrieving multi-source, multi-hazard data and
carrying out dynamic monitoring of mine disaster risks is important to securing safe operations in
mining areas and protecting the geological environment. It is a crucial demand for China's current
mine safety and disaster prevention and mitigation efforts.
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In recent years, as China has tightened oversight of safe mining and rolled out pervasive digital
and smart technologies for extraction and hazard control, both the frequency and lethality of mining-
related incidents have been markedly curbed. Against the backdrop of the era of digital intelligence,
the efficient acquisition, rapid management, and precise retrieval of multimodal information provide
key technical support for cross-modal information retrieval and visual analysis applications[10]. It
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continuously promotes in-depth research on multimodal information retrieval technology by
scholars at home and abroad, and expands its application into the study of mine disaster prevention
and control. Table 1 provides an overview of the development stages and characteristics of

multimodal information retrieval technology.

Table 1

Development Characteristics of Multimodal Information Retrieval Technology [11, 12]

Time Core features of technological Application connections in the field of Key supporting
nodes development mining disasters technologies
1. The technology is in the early
1. At this stage, research on multimodal accumulation stage and has not been 1. Traditional
technology is just beginning, mainly directly applied to mine disaster si. nal brocessin
focusing on multi-source data fusion, prevention and control; g .p g
1960s- . . . . . . techniques;
feature analysis, and similarity retrieval; 2. The underlying logic of data fusion .
1970s . . . 2. Early machine
2. The scope of research is gradually and feature analysis provides a learnin
expanding to the fields of speech theoretical reference for the al orithgms
recognition and synthesis. subsequent processing of multi-source & '
mine monitoring data.
1. In this stage, big data and cloud . I
. & 8 . 1. Technology began to extend into 1. Distributed
computing technologies have emerged, . . . .
. . the field of engineering; cloud computing
Early breaking through the computational . . .
. 2. Pilot studies were conducted, architecture;
21st bottleneck of large-scale data analysis . . .
. starting with the use of the technology 2. Classic
century- and complex model training; o . o . .
. . for preliminary retrieval of monitoring  machine learning
2010 2. Multimodal technology has achieved . . .
. s data for single-type mine disasters models (SVM, K-
leapfrog development, with the capability such as surrounding rock strain Means)
to initially handle high-dimensional data. & ’ '
1. At this stage, the technology is 1. With its advantage in adapting to
becoming increasingly mature, forminga  high-dimensional data, it has gained
technical system for high-dimensional wide attention in the field of mine
heterogeneous data adaptation, cross- disaster data retrieval; .
. . . . . . . 1. Deep learning
modal precise matching, and real-time 2. It is applied to disaster risk .
2010- . . S o . algorithms;
retrieval and analysis; monitoring and similar case matching
Present . . . 2. SR-DL;
2. Algorithms such as sparse for tunnel deformation, mine water 3 LSH

representation and locality-sensitive
hashing are deeply integrated with
multimodal technology, improving
retrieval efficiency and robustness.

inrush, surface subsidence, and
induced landslides, becoming a key
technological support for mine
disaster prevention and mitigation.

Note: Support Vector Machine (SVM), K-Means Clustering Algorithm (K-Means), Sparse Representation and Dictionary

Learning Method (SR-DL method), Locality-Sensitive Hashing (LSH)

2. Mine Disaster Data and Retrieval Technology

2.1 Disaster Data

Mine disaster data refers to the collection of structured and unstructured information that can
be collected, stored, analyzed, and applied, encompassing the entire process related to the
formation, occurrence, development, evolution, and prevention of various mine disasters
throughout the entire lifecycle of mine exploration, construction, production, and closure. Through
mining, modeling, and validating full-cycle monitoring data of mine disasters, the mechanisms of
disaster formation, evolution patterns, and influencing factors can be revealed. This will enhance the
precise management of disaster risks, the timeliness of early warnings, and the scientific nature of
emergency response, achieving the greatest possible reduction in the occurrence and impact of
mining disasters.
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Mining disasters have typical characteristics such as high frequency, multiple types, wide impact,
and secondary chain effects. And data on such disasters exhibit multi-dimensional, spatiotemporal,
and dynamic evolutionary characteristics, which resulted in the traditional data retrieval paradigm
facing application bottlenecks such as 'incomplete search, inaccurate retrieval, and slow response’
during use. The above data characteristics indirectly determine that the in-depth processing and
value extraction of disaster information require the introduction of interdisciplinary approaches and
advanced data retrieval technologies to achieve a high-fidelity representation of disaster scenarios
and efficient reuse of data resources. Thereby supporting a synergistic improvement in the accuracy,
timeliness, and robustness of mine disaster prediction, early warning, and emergency response. To
this end, the manuscript systematically reviews the adaptation principles and application paths of
three retrieval methods, which are Convolutional Neural Networks (CNN), LSH, and SR-DL methods
in the field of mining disasters, aiming to provide a methodological reference for the efficient
retrieval and intelligent application of big data in mining disasters.

2.2 Retrieval Technology
2.2.1 CNN

CNN, as a classic feedforward architecture in deep learning, focuses on convolution operations
and can quickly uncover deep patterns or structures in images, text, and other data. And it can enable
automatic extraction of key features from large-scale data, which can significantly improve the
efficiency and accuracy of data retrieval. Figure 3 shows the development history of convolutional
networks.
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Fig. 3. Development history of convolutional networks

In image retrieval, CNN can accurately recognize different visual modalities such as objects,
scenes, and faces. In text retrieval, it can efficiently identify high-level semantic features such as
keywords, topics, and syntactic structures. These advantages give it significant strengths in the deep
representation of complex heterogeneous data and the mining of hidden correlations. CNN perform
local perception and weight-sharing operations on input data through their unique convolutional
layers, its classification accuracy higher than most early shallow neural network models. Convolution
operation serves as the basis for feature extraction, and its operation formula is: N = (W — F +
2P)/S + 1, where W is the input, F is the convolution kernel, P is the padding, and S is the stride.
When performing convolution output, the convolution output formula as Eq (1):
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Y[i,j, k] = 0(XiZoXh=0 XezoX[i + a,j + b,c] - W(a, b, ¢, k] + b[k]) (1)
where, Y[i, j, k] is the value at position (i,j) of channel k in the output feature map; o is the
activation function, usually ReLU (Rectified Linear Unit) or another nonlinear activation function; H
and W are the height and width of the convolution kernel; C is the number of channels in the input
feature map; X[i + a,j + b, c] is the value at position (i + a,j + b) of channel c in the input feature
map; Wla, b, c, k] are the parameters of the convolution kernel; b[k] is the bias term. In the
convolution operation, after the input feature map undergoes element-wise multiplication and
accumulation with the convolution kernel, a nonlinear mapping is completed through an activation
function. Thereby, it generates the response values at each spatial position in the output feature map
and completes the convolution output.

Based on CNN, feature extraction can be performed, and mapping can be completed in the
feature space. This enables CNN to achieve good performance in image retrieval. Therefore, CNN
serves a pivotal function in the processing of various types of geological disaster monitoring data.
With the exponential increase in disaster data volume, and CNN mostly applied to static spatial data,
a single frameworks now fall short of coping with the volatile and intricate requirements posed by
disaster-related data processing. Thus, there is an urgent need to carry out data processing and
analysis by introducing multimodal fusion methods. Against this background, LSH and SR-DL method
have been widely applied in data retrieval and processing due to their ability to handle multimodal
data and their simplicity and flexibility.

2.2.2 LSH

The LSH is an advanced optimization of the hashing method. Compared to the hashing method,
this approach can effectively ensure that similar data have the same or similar hash values in the
hash space. It addresses the challenge of similarity search for high-dimensional mining disaster data,
such as distributed fiber optic strain monitoring data. Unlike the 'random mapping' of traditional
hashing, for the similarity retrieval needs of distributed fiber optic strain monitoring data in mining
disasters, LSH designs specific hash functions such as cosine distance hashing and Euclidean distance
hashing [13-15]. This allows disaster data with similar features to be mapped into the identical hash
bucket alongside high probability, significantly reducing the number of retrieval comparisons. The
implementation process of this method is shown in Figure 4.

Application Process of LSH in Multidimensional Data Retrieval
for Mine Disasters
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Fig. 4. Application Process of LSH in Multidimensional Data Retrieval for Mine Disasters

Cosine distance (adapted for directional similarity in high-dimensional data) is employed to
guantify the angular congruence of a pair of high-dimensional vectors. It is suitable for monitoring
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scenarios in mine data, such as changes in surrounding rock strain over different time periods, where
the 'trends are similar but the magnitudes differ." For high-dimensional monitoring data vectors
X, Y€ R%, randomly generate a hyperplane normal vector r € R4 (with vector elements following
the standard normal distribution N (0, 1)), The hash function as Eq (2):

$$h, (x) = sign(r - x) = {_11” rxcx2<00 $ (2)

where 7. x represents the dot product of vectors, and sign(-) is the sign function.
If the angle between two vectors x, y is 8, then the probability that the vectors map to the same
hash value as Eq (3):

Plh () = R, ()] =1-2 (3)
where the smaller 8 is, the more similar the data are, the higher the probability that the hash values
will be the same, and the easier it is to map the clustering of similar data.

Therefore, in practical applications, it is possible to quickly match cases similar to real-time
monitoring data from a vast amount of historical disaster data, thereby assisting disaster warning
decisions.

Euclidean distance (suitable for high-dimensional data with similar numerical values) is used to
measure the numerical differences between two high-dimensional vectors. It applies to monitoring
scenarios in mining data where measurements in the same area, such as gas concentration
monitoring sequences, have 'similar magnitude and trends'. For high-dimensional monitoring data
vector x € R%, construct a linear hash function as Eq (4):

hap () = |22 (4)
where, a € R% is a random vector following the standard normal distribution N (0, 1); b € [0, w] is
a random offset, following a uniform distribution; w is the bucket width parameter, which needs to
be adjusted according to the data distribution; [-] denotes the floor function. The smaller the
Euclidean distance ||x — y||, between vectors x, y, the higher the probability that hg;,(x) =
hqap(y), increasing the probability that akin data entries will be mapped to an identical hash bucket.

2.2.3 SR-DL method

The SR-DL method addresses the inherent characteristics of mining disaster data, which are
multidimensional, highly noisy, and multimodally heterogeneous. By constructing a sparse dictionary
that is deeply adapted to the disaster data, it achieves efficient compression and accurate retrieval
of the target data. Given that mine monitoring data generally contains sensor noise and
environmental interference signals, sparse representation can significantly improve the robustness
of the retrieval process by eliminating redundant noise and preserving the core features of disasters.
At the same time, it can effectively integrate distributed fiber optic strain monitoring data, formation
lithology parameters, and in-situ stress distribution data to construct a multimodal joint sparse
dictionary, thereby addressing the challenge of unified retrieval of heterogeneous data. In addition,
this method can simultaneously perform disaster information feature extraction while achieving data
dimensionality reduction and compression, without the need for additional dimensionality reduction
preprocessing steps. Thereby it can boost system-wide data-processing performance substantially.
The implementation process of the method is shown in Figure 5.
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Workflow of SR-DL method for Mine Disaster Data
Retrieval

K-SVD Dictionary
Learning

=

Mine Disaster Data Sensor monitoring (Non-) standardized Sensor Optimization and
Collection processing Real-Time Monitoring

Fiber optic strain Sensing Standardized processing

K-SVD Dictionary 3 L1 Regularization
Learning = Spatial encoding Optimization

E, ;y.z;/argvm:ﬂ\) L1-Regularization data(6)
g -
} = ° ]

Top Similarity Score

Data iteration Spatial Coding Similarity Matching Data Retrieval Results
L1 Regularization

Fig. 5. Workflow of SR-DL method for Mine Disaster Data Retrieval

When using this method in practical monitoring, historical disaster data is usually used as training
samples. Through classical dictionary learning algorithms such as K-SVD, an overcomplete sparse
dictionary is trained, where the atoms in the dictionary correspond to typical features of mining
disaster data. For example, the sudden change characteristics of strain before the roof collapse and
the concentration fluctuation characteristics of gas outbursts, the K-SVD dictionary update iteration
as Eq (5):

Ex =Y =Y. dja’ USVT = SVD(Ep2)dy = uy, a* = oyv] (5)

where, SV D stands for Singular Value Decomposition; E, is the reconstruction error matrix after
removing the k atom; (2, is the index matrix of nonzero coefficients; dj, is the dictionary atom; u4,
01, v; are the left singular vector, the largest singular value, and the right singular vector from the
SVD, respectively; a® is the row vector of encoding coefficients corresponding to the dictionary
atom.

For the retrieved fiber optic strain monitoring data y € R¢, it is transformed into a coded vector
containing only a few non-zero coefficients through sparse representation on a predefined
dictionary—the non-zero coefficients correspond to atoms. By further calculating the similarity
between this encoded vector and the encoded vectors of historical disaster data, rapid matching of
similar historical disaster cases can be achieved. This provides an efficient solution for mine disaster
retrieval tasks. The optimization objective of sparse coding (L1 regularization, noise resistance) is
given by Eq (6):

mingllallis.t. |y —Dall; < e (6)

where, ||a||; is the L1 norm, which promotes sparsity in the coding vector; € is the reconstruction
error tolerance, used to filter out interference caused by sensor noise.

The similarity matching as Eq (7):

TR (7)
lanewllzlla;ll2

where, ., is the encoding vector of the new data; {a;}]=, is the set of encoding vectors of
historical disaster data. The closer the calculated similarity value is to 1, the greater the alignment

between the disaster profiles of the two datasets.

sim(Apews> ;) =

3. Case Analysis of Mine Disaster Incidents

The particularly serious collapse accident of the Alxa Xinjing open-pit coal mine in Inner Mongolia
Autonomous Region of China occurred on February 22, 2023 (Figure 6). The investigation results of
the accident showed that in the early morning of the day of the accident, a small area of landslide
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had occurred on the west side and the top of the accident location. And it generates precursors of
collapse, such as the expansion of cracks on the slope and at the bottom, and dust emission. In
addition, the continuous high-intensity stripping operations at the bottom of the mining area have
continuously reduced the stability of the slope. This has left the slope in an unstable state. The
stripping and mining disturbance, combined with the over-boundary dumping, further aggravates
the development of faults and joint fissures. Ultimately, it triggered a large-scale landslide and
collapse of the side-hill rock mass along the fault and joint planes, and caused significant casualties
and enormous economic losses.

Fig. 6. Scene of the open-pit coal mine collapse in Alxa Left nne, Alxa ague, Inner Mongolia

3.1 Research Process of Collapse Disaster Data

Taking "Inner Mongolia coal mine collapse" as the keyword, the manuscript uses crawler
technology to obtain a total of 5829 disaster text data from Sina Weibo about the "2:22" open-pit
coal mine collapse accident in Alxa, Inner Mongolia, in 2023. Combined with the LDA (late Dirichlet
allocation) model (Figure 7) [16-18], the text data is subject classified and visually displayed. Aiming
to provide real-time dynamic information support for mine disaster risk monitoring. The research
process covers four modules: data collection and preprocessing, word frequency statistics, LDA
model classification and word cloud result visualization. In the data collection phase, the hash
method is selected to achieve rapid retrieval of similar content in Weibo, which significantly improves

the efficiency of data collection.
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Journal of Intelligent Decision Making and Granular Computing
Volume 2, Issue 1 (2026) 1-12

Given that Weibo data is dynamic and real-time, set it to be automatically crawled every 3 hours,
with keywords and crawling intervals dynamically updated to ensure the timeliness of the collected
data. In response to the common issue of multi-source heterogeneous differences in mine disaster
data, the manuscript sequentially performs deduplication, missing value completion, and anomaly
removal on the collected data to ensure its uniqueness and consistency. Subsequently, the Weibo
data was processed with Chinese word segmentation, meaningless word filtering, and noise
reduction [19]. The processed data can provide high reliability input for the follow-up LDA topic
model and fast semantic clues for disaster research and rescue decision-making.

After completing the data preprocessing, LDA topic model was employed to extract topic features
and perform clustering on the text corpus. This process aimed to uncover latent topic information
and categorized it into three topics: disaster site, disaster cause analysis, and disaster relief within
disaster events. Concurrently, making use of word cloud visualization technology to map the three-
dimensional distribution of topics-words-heat distribution [20]. This reveals the public's focus of
attention and the path of information dissemination, providing data support for emergency
command and rescue decision-making in mining disasters (Figure 8).

3.2 Analysis of Research Results on Collapse Disaster Data
3.2.1 Visual analysis

A word cloud uses words as its basic units and employs visual encoding in which the font size is
proportional to word frequency, mapping high-dimensional word frequency vectors to low-
dimensional visual weights, thereby making thematic features instantly readable. Consequently,
following the topic classification based on the LDA model, it needs to extract and conduct frequency
statistics on the high-probability terms under each topic. Subsequently, the wordcloud engine is
invoked to generate topic-specific word clouds. In these word clouds, the character size is
monotonically positively correlated with the frequency of word occurrence, which means font size
scales directly with term frequency. In these word clouds, the character size is monotonically
positively correlated with the frequency of word occurrence, which means font size scales directly
with term frequency. This reflects the greater weight of the term within the topic. This method
intuitively presents the core semantics of each topic and the focus of public attention. It also provides
technical support for analyzing the propagation patterns of disaster-related public opinion and the
evolution trends of hotspots.
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Disaster relief

As shown in Figure 8, in Theme 1, keywords such as 'dust,' 'subsidence,' and 'slip' are relatively
larger in font size. This indicates that the topic mainly focuses on a direct description of the conditions
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at the disaster site following the collapse at the Alxa open-pit coal mine. In Topic 2, keywords such
as 'cause,’ 'investigation,' and 'press conference' are larger in font, indicating that this topic focuses
on investigating the causes and analyzing events after a disaster. In Topic 3, keywords such as
'protection,' 'guidance,' and 'disposal’ are highlighted, reflecting that this topic focuses on emergency
rescue and response actions at disaster sites.

3.2.2 Heat Analysis

To further analyze the heat distribution of the 'Inner Mongolia coal mine collapse' disaster text
data on the Weibo platform. The manuscript uses the number of comments, shares, and likes as
proxy variables for heat, and conducts a comparative analysis of the top 10 heat data (Figure 9).
Statistical data indicate that the top accounts for the three metrics are highly homogeneous, all
centred around authoritative media such as 'CCTV News,' 'Red Star Video,' and 'People's Daily.'
Among them, a single post by CCTV News reached peak numbers in comments (6,479), shares (2,766),
and likes (18,219), making it the primary channel for information dissemination. From this, it can be
seen that China's official mainstream media, leveraging high credibility and a large fan base, has
significantly increased the public's understanding of disaster events. The above heat distribution not
only quantifies the allocation of public attention, but also provides a calculable and reusable basis for
decision-making in media selection for guiding public opinion during disasters, mobilizing post-
disaster relief, and disseminating disaster prevention and mitigation knowledge.
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(c) Top 10 Weibo likes
Fig. 9. Weibo disaster data heat distribution

In summary, word cloud visualization and heat analysis can transform the intensity of disasters,

emergency measures, and rescue trajectories of coal mine collapses into a semantic map that is easy
to interpret. This can provide a quantitative basis for the spatiotemporal optimization of rescue
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forces and resources, thereby supporting post-disaster recovery and reconstruction of various mining
engineering accidents. This approach can also be applied to the rapid assessment and emergency
decision-making of other similar disasters, continuously contributing to the upgrade of mining
engineering disaster risk management toward a data-driven and agile response model.

3. Conclusions

The manuscript focuses on the key issues of mine disaster risk monitoring, and based on topic
model retrieval technology, it conducts research on the data retrieval of 'Inner Mongolia coal mine
collapse' accidents through result visualization and keyword popularity analysis. Based on the
retrieval results, dynamically monitor and precisely assess the risk of mining disaster accidents, and
reach the following conclusions:

(1) Systematically analyzed the development history and feature overview of topic model
retrieval technology, and focused on reviewing the principles and application processes of retrieval
methods such as CNN, LSH, and SR-DL method;

(2) Based on crawler technology, relevant data on the '2:22' open-pit coal mine collapse accident
in Alxa, Inner Mongolia, in 2023 were retrieved and analyzed. By taking the evolution process of
disaster-related topics as the entry point, the distribution of the collapse accident disaster topics,
development trends, and disaster effects was obtained, providing a scientific reference for the
implementation of dynamic regulation strategies for mine disaster risks.

(3) With the widespread application of technologies such as the Internet of Things, large models,
and digital twins in the field of mining engineering, in the future, multi-source technologies including
Al video intelligent monitoring can be integrated to build large models for disaster accident
prediction from aspects such as risk point identification, risk level establishment, and disaster
severity assessment, thereby achieving dynamic monitoring and precise evaluation of mining disaster
risks. At the same time, massive accumulated fiber optic sensing data and online reviews from social
media can be further utilized to continuously optimize the accuracy of model evaluations. Based on
this, precise monitoring and reliable prediction of mining disaster risks can be achieved. It provides a
scientific basis for safe mine operations and the prevention and control of disaster incidents.
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