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Amid growing global emphasis on sustainability and supply chain 
transparency, enterprises—particularly in the resource-intensive electronics 
manufacturing sector—face increasing pressure to integrate sustainable 
criteria into supplier performance evaluations. This study develops a multi-
year supplier assessment framework that enhances conventional evaluation 
practices by incorporating sustainability-oriented indicators. Building on a 
real-world case from a publicly listed Taiwanese electronics manufacturer, 
the proposed model systematically analyzes the annual performance trends 
of key suppliers. To address expert judgment uncertainty and confidence, this 
study employs a Z-numbers-based Decision Trial and Evaluation Laboratory 
(Z-DEMATEL) technique, which integrates Z fuzzy theory to model the 
interdependencies among evaluation criteria while capturing the inherent 
ambiguity and subjectivity of expert assessments. The resulting influence 
weights inform the subsequent application of PROMETHEE-AL (Preference 
Ranking Organization Method for Enrichment Evaluation based on Aspiration 
Level), a preference ranking method incorporating aspiration levels, to 
aggregate supplier performance scores. This dual-method approach allows 
for the inclusion of ideal target levels in the ranking process, thereby 
increasing decision relevance and interpretability. The model is applied to 
historical data spanning multiple years to identify suppliers with stable or 
improving performance trajectories, while also flagging declining suppliers 
for managerial intervention. Empirical findings indicate a continued emphasis 
on traditional criteria such as cost, quality, and delivery, with sustainability-
related indicators receiving limited weight—highlighting an opportunity for 
strategic improvement in the company’s sustainability transition. The 
proposed integrated Z-DEMATEL and PROMETHEE-AL model not only 
strengthens the scientific and practical robustness of supplier evaluations but 
also supports long-term strategic planning and sustainable supplier 
development. The methodology can be readily adapted for use in other 
industry settings seeking to balance operational excellence with 
sustainability goals. 
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1. Introduction 
The contemporary global business landscape is characterized by intricate supply chains 

susceptible to a myriad of disruptions, including geopolitical tensions, trade conflicts, and the 
escalating impacts of climate change [1]. These factors highlight the inherent vulnerabilities within 
global supply networks, which significantly impact raw material procurement, logistics, and 
production operations. Compounded by the uncertainties of international trade policies and a 
growing environmental consciousness, enterprises face mounting pressures related to tariffs, trade 
barriers, and the imperative to adopt sustainable practices [2]. Consequently, Sustainable Supply 
Chain Management (SSCM) has emerged as a critical strategic approach, enabling businesses to 
navigate these challenges by integrating economic, environmental, and social considerations [3]. 

Within SSCM, the selection and performance evaluation of suppliers is pivotal, as suppliers play 
a central role in a firm's overall sustainability footprint and operational efficacy [4]. The electronics 
manufacturing industry faces intense pressure due to rapid product lifecycles, high energy 
consumption, and the use of potentially hazardous materials [5]. For companies like S Company, a 
prominent electronic lead frame manufacturer, the performance of its copper material suppliers is 
crucial not only for traditional metrics such as quality, cost, and delivery but also for its broader 
sustainability objectives. However, existing supplier evaluation mechanisms in many organizations, 
including S Company, often prioritize short-term financial indicators and lack a systematic approach 
to comprehensively incorporate long-term performance trends and sustainability aspects. This 
deficiency can lead to suboptimal supplier selection, increased supply chain risks, and difficulties in 
achieving strategic sustainability goals. In particular, the absence of longitudinal analysis impedes 
firms from identifying consistent top performers, detecting early signs of supplier degradation, or 
recognizing suppliers with improving capabilities. Therefore, implementing a multi-year performance 
tracking mechanism is essential for ensuring the reliability and resilience of supply networks, as it 
enables firms to observe supplier development trajectories and align long-term strategic 
partnerships with sustainability goals. Traditional supplier evaluation methods often struggle to 
adequately address the inherent uncertainties and subjectivities in expert judgments, as well as the 
complex interdependencies among various performance criteria. Multi-Criteria Decision Making 
(MCDM) techniques provide structured frameworks for tackling complex decision problems. 
However, there is a need for hybrid models that can more effectively capture the nuances of 
sustainable supplier evaluation, particularly the vagueness in human assessments and the dynamic 
nature of supplier performance [6]. 

 SSCM integrates environmental, social, and economic considerations into conventional supply 
chain management [4]. The selection of sustainable suppliers is a cornerstone of Sustainable Supply 
Chain Management (SSCM), as suppliers' activities directly influence the environmental and social 
impact of the entire supply chain [7]. Key criteria in sustainable supplier selection typically span 
economic factors (e.g., cost, quality, delivery), environmental factors (e.g., pollution control, green 
design, resource consumption), and social factors (e.g., health and safety, labor rights, community 
impact) [8, 9]. 

Numerous MCDM methods have been applied to supplier selection. Standard methods include 
the Analytic Hierarchy Process (AHP) [9], the Technique for Order of Preference by Similarity to Ideal 
Solution (TOPSIS) [9, 10], and Decision Trial and Evaluation Laboratory (DEMATEL) [11]. DEMATEL is 
particularly useful for understanding the causal relationships and influence levels among criteria. 
However, traditional DEMATEL does not adequately handle the uncertainty and vagueness inherent 
in expert linguistic assessments. 

To address this, fuzzy set theory has been integrated with DEMATEL, resulting in methods such 
as fuzzy DEMATEL [12]. Z-numbers, introduced by Zadeh, offer a more comprehensive approach to 
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modeling uncertainty by considering not only a fuzzy restriction on a variable  but also the reliability 
or confidence in that assessment [13]. This aligns with the principles of granular computing, which 
deals with the processing of imprecise, uncertain, or partially accurate information [14]. The Z-
DEMATEL method utilizes Z-numbers to capture expert judgments with greater fidelity, rendering it 
a powerful tool for determining criterion weights in complex decision-making environments [15]. 

The Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) is 
another widely used MCDM technique for ranking alternatives. It is known for its simplicity in concept 
and application, as it requires fewer assumptions compared to other methods. PROMETHEE II 
provides a complete ranking of alternatives [16]. The integration of aspiration levels into 
PROMETHEE, known as PROMETHEE-AL (PROMETHEE based on the Aspiration Level concept), allows 
decision-makers to evaluate alternatives not just relative to each other but also against desired 
performance targets [5]. This is particularly relevant for supplier performance management, where 
companies often have specific goals for their suppliers [17]. 

While Z-DEMATEL and PROMETHEE have been used in various contexts, the integrated 
application of Z-DEMATEL (leveraging Z-numbers for robust criteria weighting under uncertainty and 
aligning with granular computing) and PROMETHEE-AL (for ranking suppliers against aspiration levels 
using multi-year data) for sustainable supplier evaluation in the electronics industry, specifically for 
a key commodity like copper, represents a significant research gap [18]. Existing studies often focus 
on single-year assessments or do not fully capture the confidence of expert judgments in criteria 
weighting [19]. This study aims to fill this gap by developing and applying such a hybrid model. 

The primary objective of this research is to develop and validate a comprehensive and intelligent 
decision-making model for evaluating sustainable supplier performance in the electronics industry. 
The specific objectives are: 

i. To establish a sustainable supplier performance evaluation framework for an electronic 
lead frame company, incorporating traditional criteria (Quality, Delivery, Cost, Flexibility, 
Cooperation) and a dedicated Sustainability Performance criterion. 

ii. To employ the Z-DEMATEL method to determine the interrelationships among these 
evaluation criteria and derive their influential weights, explicitly considering the 
uncertainty and confidence levels of expert judgments through Z-numbers. 

iii. To utilize the PROMETHEE-AL method, incorporating the criteria weights from Z-DEMATEL 
and multi-year historical performance data to rank suppliers and assess their performance 
against defined aspiration levels. 

iv. To provide actionable managerial insights and recommendations for the case company (S 
Company) based on the evaluation results, thereby enhancing its sustainable supplier 
management strategies. 

 The remainder of this paper is organized as follows: Section 2 details the research methodology, 
explaining the Z-DEMATEL and PROMETHEE-AL techniques and their integration. Section 3 presents 
the empirical case study, including the problem description, application of the proposed model, and 
the results obtained. Section 4 discusses the findings, managerial implications, and contributions of 
the study. Finally, Section 5 concludes the paper with a summary, limitations, and directions for 
future research. 
 
2. Methodology  

This study proposes a hybrid MCDM model that integrates Z-DEMATEL and PROMETHEE-AL to 
evaluate sustainable supplier performance. The research framework involves several stages: (1) 
Defining sustainable supplier evaluation criteria based on literature and expert input from the case 
company [20]. (2) Collecting expert judgments on the interrelationships and importance of these 
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criteria. (3) Applying Z-DEMATEL to analyze these judgments, determine criteria weights, and 
understand their causal relationships. (4) Collecting historical performance data of suppliers against 
these criteria. (5) Applying PROMETHEE-AL, using the derived criteria weights, to rank suppliers and 
measure their performance against aspiration levels. (6) Analyzing the results to provide managerial 
insights. 

 
2.1. Z-DEMATEL Method 

The Z-DEMATEL method constitutes an extension of the traditional DEMATEL approach, 
distinguished by its incorporation of Z-numbers to more effectively address the uncertainty and 
reliability inherent in expert linguistic assessments. A Z-number, denoted as Z = (A, B), is an ordered 
pair of fuzzy numbers, wherein A represents a fuzzy restriction on the potential values a variable may 
assume, and B signifies a fuzzy restriction on the reliability or certainty attendant upon A [13]. This 
approach is deemed particularly opposed to decision-making problems wherein expert opinions are 
characterized by subjectivity and may exhibit variability in confidence [21]. 

The procedural steps integral to the Z-DEMATEL method are delineated as follows: 
Step 1: Establishment of Evaluation Criteria and Expert Group 

A set of n evaluation criteria,  = 21
,C ,...,j nC C C , is formally defined. For the purposes of this 

study, the designated criteria are Quality (C1), Delivery (C2), Cost (C3), Flexibility & Cooperation (C4), 
and Sustainability Performance (C5). A group comprising K experts is constituted to provide pairwise 
comparisons of these criteria. 

Step 2: Collection of Expert Judgments employing Z-numbers 

Experts are tasked with evaluating the direct influence exerted by criterion iC  upon criterion jC

, utilizing linguistic terms for both the level of influence (e.g., 'No influence' to 'Very high influence') 
and their confidence in this assessment (e.g., 'Very low reliability' to 'Very high reliability'). These 
linguistic terms are subsequently converted into triangular fuzzy numbers. 

Step 3: Verification of Expert Consensus 
The Average Sample Gap (ASG) is employed as a metric to quantify the degree of consensus 

among the participating experts. Should the ASG be less than or equal to 5%, the expert opinions are 
deemed to be consistent. The formula is Equation (1): 

( )( )( )
( ) ( )

( )
= = =

 −
 = − −  
 
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wherein ( )k

ija  represents the average fuzzy assessment for the influence of iC  on jC  aggregated 

across all experts. For fuzzy numbers, this calculation is typically executed on the defuzzified values 
or on a component-wise basis. 

Step 4: Construction of Direct Relation Matrix  
The judgments elicited from the K experts are aggregated to formulate an initial direct-relation 

matrix A , wherein ijA  signifies the aggregated fuzzy influence of iC  on jC . This aggregation is 

customarily achieved by averaging the corresponding fuzzy numbers Equation (2): 
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k represents the expert, such as k = 1, 2, ..., K, indicating that a total of K experts contributes to 
the evaluation. Within the framework of expert-based decision analysis, ijl , ijm , and iju  denote the 

minimum, median, and maximum values of the aggregated group's judgment, respectively. The 
derivation of ijl  is obtained as shown in Equation (3). Following a similar process, ijm  and iju  are 

derived according to Equations (4) and (5). 

( ) =

=


= −  =  =




 1

1
2 1 0  

K k
K ijk k

ij ij ijk
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 (3) 
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 (4) 
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
= −  =  =




 1

1
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K ijk k

ij ij ijk
ij

uz
u u u
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Where =min  k

ij k ijl l represents the lowest assessed value of the degree of influence among all 

experts. The term =min  k

il k ijm m  denotes the median value of the expert assessments, while 

=min  k

ij k iju u  represents the highest assessed value. 

To ensure the accuracy and representativeness of the findings, this research requires the 
integration of the expert panel's assessments into a direct-relation matrix, as formulated in Equation 
(6). 


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In the direct influence relation matrix, the diagonal elements are set to zero ( == 0  ( )ij whe ia n j

), signifying that a criterion does not influence itself. Each element ( ) = ,  ,  L M U

ij ij ij ija a a a  is a fuzzy 

number representing the influence degree. 
Step 5: Normalization of the Direct-Relation Matrix 
To eliminate the influence of data scales and ensure data stability, the expert assessment values 

for  ija , originally on a scale from 0 to 4, are transformed. This is achieved through min-max 

normalization, which converts the assessment values to a 0–1 scale, as detailed in Equations (7) and 
(8). 
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Step 6: Calculation of the Total Influence Matrix T  
The total influence matrix T  is calculated according to the formula: 
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each element  ijt  is represented as a triangular fuzzy number ( ( ) = ,  ,  L M U

ij ij ij ijt t t t ) to denote the 

degree of influence. The components L

ijt , M

ijt , and  U

ijt  signify the lower bound, median, and upper 

bound of the influence value, respectively. 
The total influence matrix T, which includes all direct and indirect influence relationships, can be 

represented by the infinite series 
   + +T = X + X X

2 . Since the calculation of this infinite 
series (Equation (10)) is computationally cumbersome, a more efficient, closed-form solution can be 
derived, as shown in Equation (11): 
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Where  


 =X 0

n n
 represents the identity matrix, typically serving as a fundamental element 

for standardization or influence relationship matrix calculations. 
 
Step 7: Calculation of Influence and Prominence Vector 
Using Equations (12) and (13), the Total Influence Matrix T  is summed row-wise to obtain 

influence degree r . Similarly, using Equations (14) and (15), column-wise summation yields 
influenced degree s . Influence degree r  and influenced degree s  derived from total influence 
matrix T  row and column summations represent total output and input influence degrees, 
respectively, measuring each criterion's total input influence. 

Influence degree r  summation results: 
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Influenced degree s  summation results: 
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The sum of influence degree r  and influenced degree s  indicates each criterion's total 
influence value. Higher combined active or passive influence indicates the criterion is more influential. 

Additionally, ( ) = ,  ,  L M U

i i i ir r r r  and ( ) = ,  ,  L M U

i i i is s s s  represent prominence and relation indicators. 

When the net influence indicator is positive, the criterion has greater influence on others (influencing 
criterion). When negative, the criterion is more influenced by others (influenced criterion). 

Centroid defuzzification method converts fuzzy values ( )    = ,  ,  L M U  to crisp values ( )  

using Equation (16). 
 

( )  


+ +
=

3

L M U

 (16) 

Through Equation (16), defuzzification of  ir  and  is  yields ir  and  is  respectively. +i ir s

reflects each criterion's overall system influence degree. Through Equation (17), influence weights 

for evaluation criteria are constructed, where iw represents criterion i ’s relative importance in the 

system, ensuring all weights sum to 1. Larger iw  indicates higher criterion influence in the system, 

identifying it as a critical system criterion. Smaller iw  indicates relatively weaker influence. 

Step 8: Derivation of Criteria Weights 

The prominence values ( +i ir s ) are utilized for the calculation of the normalized weights ( iw ) of 

the criteria: 

( )

( )
=

+
=

+ 1

i i

i n

i ii

r s
w

r s
                                                      (17) 

Step 9: Construction of the Impact-Relation Map (INRM) 

The INRM is plotted with +i ir s  as the horizontal axis and −i ir s  as the vertical axis, for the 

purpose of visualizing the causal relationships extant among the criteria. 
 
2.2. PROMETHEE-AL Method 

Within the domain of MCDM methodologies, the PROMETHEE has been extensively employed 
for decision problems involving multiple evaluation criteria. This method employs pairwise 
comparison approaches to scientifically assess the performance of various suppliers under different 
criteria, thereby determining the relative advantages and overall ranking of each supplier, effectively 
assisting decision-makers in addressing complex and dynamic decision-making requirements. 

When evaluating each criterion, the PROMETHEE method utilizes preference functions to 
transform the performance of different alternatives into preference values, calculating their 
corresponding preference degrees to form preference indices ranging from 0 to 1. To enhance 
computational and comparative efficiency, the PROMETHEE method requires the establishment of 
preference thresholds for each criterion, which serve to determine the preference intensity and 
indifference zones for specific criteria during comparison. Within the decision-making process, the 
parameters of preference functions and thresholds directly influence the final ranking results of 
alternative selection. Therefore, decision-makers must select appropriate function types based on 
actual contextual requirements to ensure the rationality and accuracy of evaluation results. 

Although the computational procedures of the PROMETHEE method are more complex compared 
to other MCDM approaches and require extensive pairwise comparisons, its rigorous and precise 
flow calculation mechanism effectively distinguishes the advantages and disadvantages of each 
supplier under different criteria, thereby providing decision-makers with more objective and 
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reasonable ranking results. Chang et al. [5] indicated that when the PROMETHEE method 
incorporates aspiration level concepts, PROMETHEE-AL can effectively determine the position of 
each supplier relative to aspiration levels, thereby providing more reasonable improvement 
recommendations. The detailed procedures of the PROMETHEE-AL method employed in this 
research are as follows: 

Step 1:Construction of Initial Matrix  

For the electronic lead frame company S with m  alternative suppliers ( 1 2, ,..., mA A A ) requiring 

evaluation based on n  criteria ( 1 2, ,..., nC C C ), the initial matrix X  is constructed as shown in Equation 

(18). Additionally, the aspiration level ( aspireA ) is incorporated into the matrix as an additional 

alternative. Here, ijx represents the performance score of the i -th supplier under the j -th 

evaluation criterion. 

 = 11 12 1 21 22 2 1 2n n m m mnX x x x x x x x x x            (18) 

Step 2: Determination of Aspiration and Worst Levels for Criteria 
The maximum and minimum values of the evaluation scale are designated as the aspiration level 

and worst level, respectively, as shown in Equations (19) and (20). In this research, the highest score 
assigned to supplier evaluation is 100, while the lowest score is 0. 

Aspiration level is expressed as: = , 1 2max , , ,aspire j j j mjA x x x             (19) 

Worst level is expressed as: = , 1 2min , , ,worst j j j mjA x x x                       (20) 

Step 3: Establishment of Normalized Decision Matrix  
This research employs the preference function, which features linear preference with an 

indifference area (Criterion with linear preference and indifference area), as the normalization 
equation, as demonstrated in Equation (21). 

 −
=    

−

( ) 0 if if 1 if 
j

j j j j j

j j

d q
P d d q q d p d p

p q
                (21) 

Subsequently, the normalized decision matrix R  can be expressed as Equation (22): 

 = 11 12 1 21 22 2 1 2n n m m mnR r r r r r r r r r          (22) 

Step 4: Calculation of Relative Weighted Preference Functions Based on Criteria 
The preference function ( , )j a bP A A  is employed to measure the degree of advantage of supplier 

aA  relative to supplier bA  under criterion jC . It reflects the decision-maker's preference degree 

between different alternatives as Equation (23): 

=  − ( , ) 0 if if j a b aj bj aj bj aj bjP A A r r r r r r                    (23) 

where  0 ( , ) 1j a bP A A                                                           

Step 5: Generation of Final Preference Index through Relative Weighting 
The criterion weights jw  generated through Z-DEMATEL are multiplied by the preference 

function ( , )j a bP A A  to obtain the final preference index ( , )a bA A , which represents the degree to 

which supplier aA  outperforms supplier bA  in overall performance as Equation (24): 


=

= 
1

( , ) ( , )
n

a b j j a b
j

A A w P A A                                             (24) 

Step 6. Calculation of Net Flow for All Relative Weights 
In the PROMETHEE-AL method, supplier performance is evaluated through the calculation of 

three flow indicators: Leaving Flow, Entering Flow, and Net Flow, where −1m  represents the total 
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number of comparisons involving supplier iA . These are calculated using Equations (25), (26), and 

(27). 

When a supplier's net flow indicator ( )iA  is larger, it indicates superior overall performance 

relative to other suppliers. In ranking, the optimal supplier possesses the highest net flow value. 

Leaving Flow indicator: +

=

 =
−


1

1
( ) ( , )

1

m

i i k
k

A A A
m

                     (25) 

Entering Flow indicator: −

=

 =
−


1

1
( ) ( , )

1

m

i k i
k

A A A
m

                   (26) 

Net Flow indicator: + −
 = −( ) ( ) ( )i i iA A A                                   (27) 

 
3. Case Study and Analysis Results  
3.1. Case Study Background 

This research examines S Company, a prominent international manufacturer specializing in 
electronic lead frame production with substantial operations in Taiwan. Lead frames constitute 
critical components in semiconductor packaging, and copper serves as the primary raw material. The 
performance of copper suppliers directly impacts S Company's operational efficiency, product 
quality, and cost competitiveness. 

S Company currently evaluates eight principal copper suppliers using traditional metrics but seeks 
to formally integrate sustainability considerations, adopting a more comprehensive and long-term 
assessment methodology. The evaluation framework was developed through consultations with 
thirteen experts from diverse functional areas, including manufacturing, research and development, 
procurement, production management, and quality assurance departments. 

The finalized evaluation criteria encompass five critical performance dimensions. Quality (C1) 
performance is assessed through defect rates, quality issue recurrence rates, batch rejection rates, 
and customer complaints attributable to material quality issues. Delivery (C2) performance evaluation 
encompasses on-time delivery rates, material shortage incidents, and additional freight costs 
resulting from delays or expedited shipments. 

Cost (C3) performance assessment incorporates price competitiveness, negotiation flexibility, 
payment terms, and total cost of ownership considerations. Flexibility and Cooperation (C4) 
performance focuses on supplier responsiveness to inquiries, efficiency in handling abnormalities, 
and proactive communication practices. 

Sustainability (C5)Performance represents the newest evaluation dimension, assessed through 
supplier responses to sustainability questionnaires, adherence to codes of conduct, and guarantees 
of conflict-free mineral sourcing. This criterion reflects S Company's strategic commitment to 
sustainable supply chain management, aligning with evolving regulatory requirements and 
stakeholder expectations in the global electronics manufacturing industry. 

 
3.2. Criteria Weighting using Z-DEMATEL* 

Table 1 presents the 13 experts provided pairwise comparisons of the five criteria regarding their 
influence and their confidence in these assessments. The ASG was calculated to be 0.025 (2.5%), 
which is below the 5% threshold, indicating a good consensus among the experts.  

 
Table 1  
Expert Team Consensus Testing Results 

 Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 Expert 7 Expert 8 Expert 9 Expert 10 Expert 11 Expert 12 Expert 13 

ASG 0.018 0.020 0.020 0.042 0.016 0.025 0.017 0.016 0.031 0.030 0.024 0.036 0.028 
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Subsequently, expert assessments regarding the relationships among criteria are integrated to 
construct the evaluation matrix. Utilizing Equation (2), the Z-DEMATEL direct influence relationship 
matrix is derived and decomposed into lower bound, middle bound, and upper bound matrix 
components. Within the direct influence relationship matrix, the influence of each evaluation 
criterion on itself, represented by the matrix diagonal elements, is not assessed and is uniformly set 
to zero, indicating that self-influence relationships are equivalent and meaningless for analytical 
purposes. 

Following acquisition of the normalized influence matrix, Equation (11) is employed to calculate 
comprehensive influence values for each evaluation criterion, enabling understanding of each 
criterion's influence degree on others and its importance within the overall evaluation system. 

As demonstrated in Table 2, criterion C₂ exerts combined direct and indirect influence on criterion 
C₁ with values of 0.197, 0.601, and 2.347 for lower bound, middle bound, and upper bound 
respectively. Additionally, criterion C₁ demonstrates self-influence characteristics with corresponding 
values of 0.116, 0.488, and 2.283. 

These calculated influence values reveal complex interdependencies within the evaluation 
framework, capturing both immediate relationships and cascading effects throughout the entire 
system. This comprehensive analysis forms the foundation for determining relative weights and 
priorities in subsequent supplier evaluation processes. 

 
Table 2  
Total Influence Relationship Matrix 

 1C  2C  3C  4C  5C  

1C  (0.116, 0.488, 2.283) (0.247, 0.679, 2.568) (0.276, 0.703, 2.534) (0.215, 0.636, 2.468) (0.182, 0.586, 2.419) 

2C  (0.197, 0.601, 2.347) (0.112, 0.473, 2.239) (0.220, 0.631, 2.399) (0.255, 0.652, 2.369) (0.167, 0.551, 2.295) 

3C  (0.280, 0.703, 2.516) (0.246, 0.679, 2.580) (0.125, 0.512, 2.346) (0.232, 0.656, 2.495) (0.231, 0.639, 2.467) 

4C  (0.226, 0.644, 2.404) (0.266, 0.690, 2.494) (0.212, 0.638, 2.433) (0.115, 0.481, 2.211) (0.203, 0.598, 2.348) 

5C  (0.126, 0.430, 1.983) (0.122, 0.432, 2.034) (0.131, 0.442, 2.017) (0.145, 0.444, 1.988) (0.057, 0.300, 1.791) 

 
Through summation of each row and column within the total influence relationship matrix, fuzzy 

total influence values and net influence values are calculated. The indicator  ir  represents the 

numerical value of influence exerted on other criteria, essentially the aggregate degree of influence 

on others, while  is  indicates the total influence received from other criteria. These two indicators 

are calculated through Equations (12), (13), (14), and (15) respectively. 

Table 3 consolidates the fuzzy total influence values  +i ir s  and net influence values  −i ir s  

for each evaluation criterion. Using criterion C₁ as an illustration for row summation, the calculation 
proceeds from left to right as follows: lower bound 0.116 + 0.247 + ... + 0.182 = 1.037, middle bound 
0.488 + 0.679 + ... + 0.586 = 3.092, upper bound 2.283 + 2.568 + ... + 2.419 = 12.272. Therefore, the 
influence degree r₁̃ yields values of 1.037, 3.092, and 12.272. 

For criterion 1C  column summation, the calculation proceeds from top to bottom as follows: lower 

bound 0.116 + 0.197 + ... + 0.126 = 0.945, middle bound 0.488 + 0.601 + ... + 0.430 = 2.866, upper 

bound 2.283 + 2.347 + ... + 1.983 = 11.533. Consequently, the influenced degree  ir  yields values of 

0.945, 2.866, and 11.533. 
These calculations establish the foundation for understanding both the influence capacity and 

influence susceptibility of each criterion within the comprehensive evaluation framework. 
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Table 3  
Fuzzy Total Influence Values and Net Influence Values 

  ir   is   +i ir s   −i ir s  

1C  (1.037, 3.092, 12.272) (0.945, 2.866, 11.533) (1.982, 5.958, 23.805) (0.092, 0.225, 0.739) 

2C  (0.952, 2.907, 11.648) (0.993, 2.953, 11.916) (1.945, 5.860, 23.564) (-0.041, -0.045, -0.268) 

3C  (1.115, 3.189, 12.404) (0.963, 2.924, 11.728) (2.078, 6.113, 24.132) (0.152, 0.265, 0.676) 

4C  (1.021, 3.050, 11.890) (0.963, 2.869, 11.531) (1.984, 5.919, 23.422) (0.058, 0.181, 0.359) 

5C  (0.581, 2.048, 9.814) (0.841, 2.674, 11.320) (1.421, 4.722, 21.134) (-0.260, -0.626, -1.507) 

 
All calculations are conducted using fuzzy number operations. To facilitate interpretation of data 

implications, defuzzification conversion to crisp values is performed through Equation (16), with 

conversion results presented in Table 4. Based on the defuzzified net influence values, criterion 3C  

possesses the highest net influence value ( −3 3r s  = 0.364), indicating that 3C  serves as the core driver 

influencing other criteria. Conversely, criterion 5C  exhibits a net influence value of -0.798, 

representing the criterion most significantly influenced by others and occupying a passive role within 
the system. 

Furthermore, +i ir s  reflects the degree of influence that each criterion exerts on the overall 

system. Through Equation (17), the influence weight for each criterion can be calculated. Within the 

sustainable supplier evaluation system, C₃ emerges as the most critical influential criterion ( +3 3r s  = 

10.774), corresponding to a weight value 3w  of 0.2098, establishing it as the most essential 

evaluation criterion within the assessment framework. 
Following the ranking of criteria according to their influence degrees, the influence weight ranking 

results for sustainable supplier evaluation criteria can be determined, yielding the sequence 

3 1 2 4 5C C C C C . This hierarchical arrangement provides the foundation for the weighted 

evaluation process in the subsequent PROMETHEE-AL analysis, ensuring that the relative importance 
of each criterion is appropriately reflected in the comprehensive supplier performance assessment. 

 
Table 4  
Z-DEMATEL Influence Rankings and Weight Assignments 

 ir  is  +i ir s  −i ir s  Weight Rank 

1C  5.467 5.115 10.582 0.352 0.2061 2 

2C  5.169 5.287 10.456 -0.118 0.2036 3 

3C  5.569 5.205 10.774 0.364 0.2098 1 

4C  5.320 5.121 10.442 0.199 0.2034 4 

5C  4.147 4.945 9.092 -0.798 0.1771 5 

Finally, this research constructs the INRM using +i ir s  as the horizontal axis and −i ir s  as the 

vertical axis, as illustrated in Figure 1. Higher +i ir s  values indicate greater overall importance of the 

criterion within the system, while higher −i ir s  values on the vertical axis represent stronger 

influence that the criterion exerts on other criteria. 
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As demonstrated in Figure 1, the upper-right quadrant contains criteria with both high total 
influence values and high net influence values, specifically C₁, C₂, C₃, and C₄. These criteria cluster on 
the right side of the diagram, with arrows indicating multiple reciprocal influences among them. 
Conversely, the lower-left region exhibits lower influence characteristics, as exemplified by C₅. 
Among all criteria examined, C₃ demonstrates the most significant total influence value. 

The INRM visualization provides decision-makers with an intuitive understanding of the complex 
interrelationships within the evaluation framework. This graphical representation effectively 
illustrates how different criteria interact and influence one another, enabling more informed 
strategic decisions regarding supplier evaluation priorities. The positioning of criteria within the INRM 
facilitates identification of core driving factors, influenced elements, and independent variables, 
thereby supporting the development of targeted improvement strategies for sustainable supplier 
management. 

 

 
Fig.1. Influence Network Relation Map of This Case  

 
3.3 Application of PROMETHEE for Supplier Performance Assessment and Ranking 

This research employs the PROMETHEE-AL method integrated with aspiration-level concepts to 
conduct comprehensive pairwise comparisons for evaluating supplier performance, thereby 
establishing a structured and scientific decision-making framework. Table 5 presents the eight copper 
suppliers collaborating with the case company. Given the inherent variations among suppliers 
regarding material quality, delivery reliability, pricing structures, technical capabilities, and 
sustainability performance, single-criterion evaluation proves insufficient for comprehensive value 
assessment. Consequently, this research implements a multi-criteria evaluation mechanism to assist 
decision-makers in achieving more objective and accurate ranking and selection processes within 
complex supply environments. 

The research incorporates five years of historical supplier performance data to enhance 
evaluation stability and predictive capability through time-series trend analysis, providing forward-
looking decision recommendations that enable the case company to achieve dual objectives of stable 
supply and sustainable cooperation. 

The PROMETHEE-AL methodology begins with constructing an initial performance matrix where 
each supplier's actual performance across the five evaluation criteria is systematically recorded. 
Aspiration levels are established at 100 points, while the worst levels are set at 0 points, reflecting 
the company's quality policy standards.  
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Table 5  
Supplier Performance Matrix and Ranking Results (2024) 

 
Supplier 

1 

Supplier 

2 

Supplier 

3 

Supplier 

4 

Supplier 

5 

Supplier 

6 

Supplier 

7 

Supplier 

8 
Aspire Worst 

Leaving 

flow 
1.136 1.066 1.047 1.052 0.885 0.924 1.108 1.077 1.861 0.000 

Entering 

flow 
0.096 0.132 0.196 0.165 0.656 0.451 0.170 0.151 0.000 8.139 

Net 

flow 
1.041 0.934 0.851 0.887 0.228 0.473 0.938 0.926 1.861 -8.139 

Gap 0.821 0.928 1.010 0.974 1.633 1.388 0.923 0.935 0.000 10.000 

Rank 1 3 6 5 8 7 2 4   

 
Pairwise preference calculations are subsequently performed using the criterion weights derived 

from Z-DEMATEL analysis. The final preference indices are computed by multiplying the preference 
functions by the corresponding criterion weights, generating comprehensive supplier comparisons. 
The PROMETHEE-AL method calculates three flow indicators for performance evaluation: leaving 
flow, representing a supplier's advantage over others; entering flow, indicating disadvantage relative 
to competitors; and net flow, providing the overall performance ranking basis. 

 

 
Fig. 2.  Five-Year Supplier Performance Ranking Trends (2020-2024) 

 
The analysis reveals distinct supplier performance patterns enabling differentiated management 

strategies. Supplier 1 demonstrates exceptional 2024 performance with the highest net flow value of 
1.041, though maintaining a GAP of 0.821 from aspiration levels, particularly requiring improvement 
in cost and flexibility cooperation dimensions. Suppliers 7 and 2 exhibit strong performance with net 
flow values of 0.938 and 0.934 respectively, representing potential strategic partnership candidates. 

Figure 2 shows that the five-year trend analysis identifies three supplier categories: consistently 
high performers (Suppliers 1 and 7) suitable for long-term strategic partnerships, variable performers 
requiring careful monitoring (Supplier 8 with high volatility despite potential), and consistently 
underperforming suppliers (Suppliers 5 and 6) necessitating development intervention or strategic 
reassessment. This comprehensive evaluation framework enables the case company to optimize 
supplier selection decisions while ensuring alignment with both operational requirements and 
sustainability objectives. 
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3.4. Discussion and Managerial Implications 
The integrated Z-DEMATEL and PROMETHEE-AL model reveals critical insights for S Company's 

procurement strategy. The Z-DEMATEL analysis demonstrates that Cost emerges as the most 
influential criterion, exerting strong causal effects on other key criteria such as Quality, Delivery, 
Flexibility and Cooperation, and Sustainability. This reflects the current organizational mindset, 
where decision-makers and departmental managers still prioritize profitability, making cost control 
the dominant consideration in supplier evaluation. As cost considerations permeate various aspects 
of supplier performance, they are often viewed as foundational levers that indirectly enhance other 
performance dimensions. In contrast, Sustainability Performance exhibits a different structural role 
in the causal network. It is primarily positioned as a result-oriented criterion (being influenced by 
others rather than exerting influence) and receives the lowest weight among all evaluation factors. 
This outcome is consistent with the current state of practice in S Company, where sustainability, while 
recognized as important, has not yet achieved parity with traditional performance measures. 
Nevertheless, S Company has expressed a clear strategic intent to advance its sustainability agenda, 
which necessarily depends on close collaboration with its suppliers. 

To this end, it is recommended that suppliers demonstrating strong overall performance be 
engaged as long-term partners in co-developing sustainability-oriented practices and standards. This 
collaboration may include establishing joint sustainability evaluation frameworks, implementing 
supplier education and training programs focused on green practices, and launching pilot audits to 
gradually incorporate environmental and social performance into routine assessments. Furthermore, 
S Company could introduce incentive mechanisms, such as preferred supplier status or future order 
prioritization, to motivate suppliers’ alignment with its sustainability vision. Through these initiatives, 
sustainability can progressively evolve from a reactive assessment factor into a core strategic pillar 
of supplier development. 

The PROMETHEE-AL rankings identify distinct patterns of supplier performance, enabling 
differentiated management approaches. Supplier 1 and Supplier 7 demonstrate consistent 
excellence and represent prime candidates for strategic partnership expansion. Supplier 1 
demonstrates strength in Quality and Delivery while also exhibiting opportunities for improvement 
in Cost Efficiency, Flexibility, and Cooperation. Targeted collaboration initiatives could elevate this 
supplier to aspiration-level performance across all dimensions. 

Supplier 8 presents a management challenge due to volatile performance despite achieving top 
rankings in specific periods. This inconsistency suggests underlying operational instabilities requiring 
enhanced monitoring protocols and contingency planning. The local suppliers, particularly Supplier 5 
and Supplier 6, require immediate development interventions to address consistent 
underperformance in cost competitiveness and quality metrics. 

The model enables S Company to transition from reactive supplier management to proactive 
strategic planning. The confidence levels captured through Z-numbers provide management with 
explicit measures of uncertainty for informed risk assessment in supplier selection decisions. The 
dynamic ranking capability transforms supplier evaluation from static annual assessments to 
continuous performance monitoring, enabling the early identification of trends and real-time 
adjustments to order allocation. 

For implementation, S Company should establish quarterly supplier review meetings utilizing the 
model's outputs to discuss performance gaps and development priorities. The gap analysis 
component provides specific performance targets for each supplier, creating clear communication 
channels for improvement expectations and ensuring supplier relationships evolve from 
transactional arrangements to strategic partnerships focused on mutual value creation. 

 



Journal of Intelligent Decision Making and Granular Computing 

Volume 1, Issue 1 (2025) 89-105 

103 
 
 

4. Conclusions 
This study successfully developed and applied an integrated Z-DEMATEL and PROMETHEE-AL 

model for evaluating sustainable supplier performance within the electronic lead frame industry, 
employing S Company as a comprehensive case study. The research addressed the critical need for a 
more systematic, intelligent, and uncertainty-aware approach to supplier selection and management, 
particularly given the increasing complexity of global supply chains and the growing emphasis on 
sustainability imperatives. 

The Z-DEMATEL method effectively captured expert knowledge and confidence levels to 
determine the influential weights of five key evaluation criteria: Quality, Delivery, Cost, Flexibility & 
Cooperation, and Sustainability Performance. The analysis revealed that Cost emerged as the most 
influential criterion, underscoring its pivotal role in supplier evaluation decisions. Notably, while 
Sustainability Performance demonstrated relatively lower weight in the current framework, it 
exhibited significant potential for independent strategic development, suggesting evolving priorities 
in supply chain management. The PROMETHEE-AL method, utilizing these derived weights in 
conjunction with five years of historical performance data, provided dynamic rankings of eight copper 
suppliers. This approach successfully identified top-performing suppliers, those exhibiting volatile 
performance patterns, and suppliers requiring targeted development interventions. The subsequent 
GAP analysis offered granular insights into specific performance areas where suppliers fell short of S 
Company's established aspiration levels. 

This research advances the MCDM literature by demonstrating a practical and robust application 
of a hybrid model that synergistically combines Z-DEMATEL and PROMETHEE-AL methodologies. The 
Z-DEMATEL component leverages its strength in handling imprecise information through Z-numbers, 
aligning with the principles of granular computing. At the same time, PROMETHEE-AL provides 
enhanced utility in ranking performance against predefined aspiration levels. The study illustrates 
how these complementary methods can be integrated to improve the intelligence and transparency 
of complex decision-making processes in sustainable supplier evaluation contexts. 

For S Company and comparable manufacturing organizations, this model presents a structured 
and adaptable framework for enhancing procurement decision-making processes. The practical 
applications include facilitating more informed and objective supplier selection and order allocation 
decisions, identifying strategic partnerships and optimizing supplier relationship management, 
implementing targeted supplier development programs, systematically integrating sustainability 
considerations into procurement processes, and ultimately enhancing overall supply chain resilience 
and competitive positioning. 

Several limitations warrant acknowledgment in this study. First, the findings are derived from a 
single case study within the Taiwanese electronics industry, which may constrain the generalizability 
of results across different industrial sectors and geographical contexts. Future research endeavors 
could validate the model's applicability across diverse sectors and regional markets. Second, while 
the Z-DEMATEL approach effectively captures expert subjectivity through confidence measures, the 
quality of the input remains fundamentally dependent on the expert's experience and judgment. 
Future investigations could explore the integration of more objective data sources for criteria 
weighing to complement expert assessments. Third, the current scope of sustainability criteria could 
be expanded to encompass more comprehensive and specific metrics as relevant data becomes 
increasingly available. This expansion would enhance the model's capacity to address evolving 
sustainability requirements and stakeholder expectations. 

Future research opportunities include exploring the integration of real-time data analytics and 
machine learning techniques with the established MCDM framework to develop more adaptive and 
predictive intelligent decision support systems for sustainable supply chain management. 
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Additionally, investigating dynamic weighting mechanisms for evaluation criteria based on changing 
market conditions or evolving strategic priorities would constitute a valuable extension of this 
research. 

The proposed hybrid intelligent decision-making model represents a significant advancement 
toward more effective and sustainable supplier performance management. By systematically 
addressing uncertainty, interdependencies, and strategic aspirations, this framework empowers 
organizations to construct more resilient, responsible, and competitive supply chains. The integration 
of advanced MCDM techniques with practical industry applications demonstrates the potential for 
bridging theoretical and methodological developments with real-world supply chain challenges, 
ultimately contributing to the advancement of sustainable procurement practices in manufacturing 
environments. 
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