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In recent years, increasing complexity in supply chains and the presence of 
high cost and risk factors in project-based industries such as shipbuilding 
have made supplier selection a critical decision-making problem. In this 
context, this study evaluates the criteria that shipyards should consider in 
supplier selection using an integrated multi-criteria decision-making (MCDM) 
approach based on Fermatean Fuzzy SWARA (FF-SWARA) and q-Rung 
Orthopair Fuzzy Set-based EDAS (q-ROF EDAS) methods. In the first stage of 
the study, the importance weights of twelve supplier selection criteria—
gathered under two main categories based on expert opinions and literature 
review—were determined using the FF-SWARA method. In the second stage, 
supplier alternatives were ranked using the q-ROF EDAS method. A sensitivity 
analysis was also conducted in the study, and rankings generated under 100 
different scenarios were evaluated. The results obtained demonstrate the 
practical applicability of the proposed method and its capability to address 
uncertainty in the decision-making process, contributing to more consistent 
and informed decisions in the shipyard and shipbuilding sectors. 
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1. Introduction 
Supplier selection, a strategic component of supply chain management, is a multi-criteria decision 

problem that has a direct impact on the operational success of businesses. This is especially true in 
project-based production areas such as the shipyard industry, where high risk and cost elements are 
evident. In such cases, the selection of appropriate suppliers is of great importance in terms of 
optimizing performance criteria such as quality, cost, delivery time and flexibility. This process 
frequently exhibits a multifaceted structure, wherein quantitative and qualitative criteria are 
evaluated in conjunction, with uncertainty and decision-maker subjectivity being paramount 
considerations. 

In this context, in recent years, multi-criteria decision making (MCDM) methods have been used 
intensively to provide systematic and analytical solution approaches to supplier selection problems. 
However, the inadequacy of traditional MCDM methods in modeling the uncertain and inconsistent 
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evaluations of decision makers has directed researchers in this field to more flexible and powerful 
mathematical structures. In this direction, the q-rung orthopair fuzzy sets (q-ROFs) theory, developed 
as an extended form of intuitionistic and Pythagorean fuzzy sets, allows decision maker opinions to 
express both membership and opposite membership degrees in a wider space. Q-ROFs has become 
an effective tool that increases decision quality in multi-dimensional decision problems such as 
supplier selection. 

This study aims to present a q-ROF based MCDM approach to a supplier selection problem specific 
to the shipyard industry. In the study, the weighting of decision criteria was performed with the 
Fermatean Fuzzy SWARA (FF-SWARA) method; and the evaluation of alternatives was performed 
with the q-ROFS based Evaluation based on Distance from Average Solution (EDAS) method. For this 
purpose, 12 evaluation criteria were defined based on literature and expert opinions, and the model 
was tested within the framework of a case study. 

The main contributions of the study in this context can be summarized as follows: 
(i) The integration of q-ROFs theory with the EDAS method on a supplier selection problem 

specific to the shipyard industry is provided, 
(ii) The application of the FF-SWARA method in criteria weighting has been shown to contribute 

to the diversification of methodological approaches within the relevant literature, 
(iii) The proposed integrated model has been subjected to empirical testing using real data, 

thereby providing a robust demonstration of its application validity. 
The study is divided into six sections. In the subsequent section, the existing literature on q-ROFS-

based supplier selection is critically evaluated. In the third section, the problem definition is made, 
and the determined criteria are presented in detail. In the fourth section, the IFS, FFS, FF-SWARA, q-
ROFs and EDAS methods utilized in the study are elucidated within a methodological framework. In 
the fifth section, the case analysis is presented; in the sixth section, the analysis results and findings 
are discussed.  

 
2. Literature Review 

Supplier selection is a multi-criteria decision problem where many qualitative and quantitative 
criteria are taken into consideration and decision makers are faced with uncertainty and subjective 
judgments. Choosing the right supplier is of strategic importance, especially in industrial areas where 
project-based production processes such as shipyards become more complex. In this context, MCDM 
methods provide a systematic and rational evaluation ground in the supplier selection process. 

However, classical MCDM methods may be insufficient to adequately reflect the uncertain 
evaluations of decision makers and the contradictions in expert opinions. For this reason, fuzzy logic 
approaches and their advanced versions have found a wide place in the literature, especially in recent 
years, to provide solutions to these problems. Q-ROFSs, which stand out among these approaches, 
offer a structure that can model uncertainty in a more flexible and detailed way, thanks to the ability 
of decision makers to express both membership and opposing membership degrees separately. Q-
ROFS, as a generalized form of intuitionistic and Pythagorean fuzzy sets, provides more expressive 
power and decision support. 

In recent years, studies on the application of q-ROFs based decision making approaches to the 
supplier selection problem have been increasing, and this method contributes to more reliable and 
realistic decisions by being used both in the weighting of supply criteria and in the evaluation of 
alternatives. In this article, a q-ROFs based MCDM approach is used to evaluate the supplier selection 
problem in the shipyard industry and it is aimed to contribute to the existing literature. 

In the study conducted to determine the most suitable offshore wind farm installation locations 
within the maritime jurisdiction areas of Türkiye in the Aegean Sea, three alternatives (Ayvalık, 
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Bozcaada, Gökçeada) were modelled with q-ROFs and evaluated with the COPRAS method. Twelve 
criteria determined as a result of the literature review were classified under four main headings as 
technical, strategic, social and environmental and weighted in line with expert opinions. Criteria are 
wind speed, wave height and period, investment cost, water depth, proximity to shore, proximity to 
power transmission grid, ship traffic density, proximity to military operation area, distance from 
fishing areas, distance from coastal touristic areas, distance from cables and pipelines, impact on 
fisheries. As a result of the applied method, it was determined that the most suitable alternative was 
off the coast of Bozcaada, and this result was confirmed by comparisons made with q-ROF TOPSIS 
and q-ROF WASPAS methods. In addition, the sensitivity analysis showed that the COPRAS method 
gave more stable results against changes in q values [1]. 

Another important contribution to this field was developed by Bisht and Pal [2], who presented 
an integrated q-ROFs decision-making framework that takes into account trust relationships and 
psychological behaviours among experts. For the analysing of green supplier selection problem, 
delivery speed, green design practices, product quality and service, total cost and energy and 
resource consumption are selected as criteria.  

Erdebilli and Sıcakyüz [3] developed an innovative decision-making model that uses q-ROF TOPSIS 
and q-ROF VIKOR methods in an integrated manner to be used in the selection of supply chain 
management strategies. Within the scope of the proposed model, the authors evaluated the 
decision-maker weights and criteria importance levels via q-ROF numbers, then normalized the 
criteria weights and ranked the alternatives. The ten criteria used for sustainable supplier selection 
in the study are: cost, innovation ability, quality, service capacity, long-term cooperation, 
environmental management system, pollution reduction, green image, social responsibility and 
employment practices. In the study, five alternative suppliers were evaluated through a real 
industrial organization example, and similar ranking results were obtained in the analyses made with 
both q-ROF TOPSIS and q-ROF VIKOR methods, demonstrating the consistency of the method. 

Saqlain et al., [4] emphasize that the selection of energy suppliers within the scope of sustainable 
energy management plays a critical role in reducing environmental impacts and optimizing resources 
with sustainable practices. In this context, a multi-attribute decision-making system was developed 
in the study, which aims to determine energy suppliers by evaluating them within the framework of 
various features and sub-parameters. The authors introduced the interval-valued q-ROF hypersoft 
sets (IVq-ROFHSS) structure to manage uncertain situations and created two new aggregation 
operators, IVq-ROFHSEWA and IVq-ROFHSEWG, using Einstein operational laws on this structure. The 
evaluation criteria are reliability and service quality, sustainability and environmental impact, 
contract terms and flexibility, pricing and cost structures, and reputation and track record. 

Supplier selection is important process, especially for companies operating in strategic sectors. In 
this context, Güneri and Deveci [5] structured the decision-making process with fuzzy-based MCDM 
methods in their study aiming to evaluate the selection criteria of supplier companies operating in 
the defence industry. In their study, supplier selection criteria were determined as a result of the 
systematic review of numerous studies published between 1966 and 2019; these criteria were 
clarified based on expert opinions with the Delphi method and weighted with the Analytical Hierarchy 
Process (AHP) method. In the evaluation phase, q-ROFS based EDAS method was used and sensitivity 
analyses were performed. According to the findings, while the main criterion that affects the decision 
process the most is performance, it was observed that sub-criteria such as product performance, 
quality, price, sustainability and operational controls stood out in expert evaluations. 

In the studies of Khan et al., [6] both the uncertainty in decision-maker opinions and the fuzziness 
of the evaluated criteria at the sub-attribute level were successfully modelled using the q-ROFHS 
structure. In addition, the q-ROFHOWG (ordered weighted geometric) aggregation operator was 
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defined and the effect of the proposed method on increasing consensus among decision-makers was 
emphasized. In the real-life example carried out to demonstrate the applicability of the model, the 
green supplier selection problem was addressed. Green supplier selection is a complex decision-
making problem that requires consideration of a large number of criteria in the context of supply 
chain applications that support environmental sustainability goals. In one of the studies conducted 
in this context, manufacturing companies assigned a group of experts to select suitable green 
suppliers and evaluations were made in line with three main criteria: product performance, supplier 
development potential and pollution control. 

As a solution to the environmental problems caused by abandoned bicycles, Xu [7] proposed a 
two-stage MCDM method based on interval-valued q-ROF (IVq-ROF) for selecting a bicycle recycling 
supplier. In the first stage, evaluation information was combined with IVq-ROF Einstein operators, 
and in the second stage, the most suitable supplier was determined by the TOPSIS method. The 
criteria evaluated in the study are green image, recycling capacity and financial capacity. 

Fetanat and Tayebi [8], proposed an innovative decision support system for the evaluation of 
industrial filtration technologies that can be used to control pollutants generated in natural gas 
processing plants in line with the principles of sustainability and sustainable maintenance. The study 
developed a q-ROFS-based version of the MAIRCA (Multi-Attributive Ideal-Real Comparative Analysis) 
method based on the q-ROFs theory, which has been proven to be effective in modelling decision 
environments containing uncertainty. In this context, five different filtration technologies (Backwash, 
Gravity Separator, Cyclone Separator, Basket Strainer and Cyclo-Filter) that can be applied in natural 
gas processing plants in the Behbahan region of Iran were evaluated and the most suitable 
technology was determined as Cyclo-Filter. The methodology used in the study offers a systematic 
MCDM approach that includes decision-maker evaluations based on linguistic variables, criterion 
weights and normalization steps in the q-ROFS environment.  

Kamacı and Petchimuthu [9], developed the “interval-valued bipolar q-ROFs” (IVBq-ROFs) 
approach to support the decision-making process in uncertain and complex evaluation environments. 
The study offers solutions to supplier evaluation and selection problems by proposing new similarity 
measures that can holistically address both quantitative and qualitative evaluations. The proposed 
decision-making algorithm is based on three basic criteria in the context of supplier selection: price, 
quality, and reputation. Each criterion was evaluated from both positive (like) and negative (dislike) 
perspectives; thus, the evaluations of decision makers were modelled more realistically. 

Liu et al., [10] developed a decision-making model based on regular q-rung orthopair fuzzy 
numbers (q-RONFNs) and the QUALIFLEX method for the Green Supplier Selection problem. The 
criteria evaluated in the study were considered as multi-faceted attributes covering economic, 
technological, environmental and social dimensions. However, the method was expanded within the 
framework of QUALIFLEX, specifically for GSS problems where the number of alternatives is less than 
the criteria. 

Mishra et al., [11] developed a new Combined Compromise Solution (CoCoSo) method based on 
q-ROFs to model evaluations under uncertainty for the sustainable reverse logistics provider (S3PRLP) 
selection problem. The study used a total of 14 criteria based on economic, environmental and social 
sustainability dimensions in the evaluation process. These criteria are: pollution control, green 
product and eco-design, green warehouse management, green R&D and innovation, environmental 
management system, cost, flexibility, quality, delivery time, technology competence, occupational 
health and safety practices, social responsibility, educational infrastructure and employment 
practices.  

Pınar et al., [12] developed a q-ROF based TOPSIS method to evaluate the green supplier selection 
problem in an uncertain environment. In the study, comparative analyses were made with classical 
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TOPSIS and intuitionistic fuzzy TOPSIS methods; it was seen that the proposed q-ROF TOPSIS method 
managed uncertainty better and made a clearer distinction between alternatives. The model 
evaluated four suppliers operating in Türkiye based on ten criteria determined by three expert 
decision makers. This study offers a new decision support approach that allows companies to make 
more accurate decisions in green supplier selection today, where environmental awareness has 
increased. The criteria are quality, cost, service and delivery, sustainability, technology, green 
production system, green supplier image, cooperation, green practices, environmental management 
and audit. 

Saha et al., [13] developed new aggregation operators in the multi-attribute decision making 
(MADM) process by focusing on q-ROFs and q-ROF numbers (q-ROFN), which allow for more precise 
and balanced expression of uncertain information. In order to provide a fair and proportional 
approach to membership and non-membership degrees, the authors defined q-ROF weighted fair 
aggregation operator (qROFWFA) and sequential weighted fair aggregation operator with new 
neutral transaction laws. The evaluation criteria considered within the scope of the study were 
determined as product quality, relationship closeness, delivery performance and price.  

Krishankumar et al., [14] proposed a new decision-making framework based on q-ROFs to solve 
the green supplier selection problem in group decision-making environments where uncertainty and 
fuzziness are intense. The study extended the evidence-based Bayesian approach and statistical 
variance (SV) method in the context of q-ROFS to provide systematic determination of decision-
maker weights and criteria weights, respectively. Four green suppliers evaluated within the scope of 
empirical application were compared in terms of five basic criteria: product delivery speed, design in 
accordance with green standards, product quality and service level, total cost, and energy and 
resource usage. 

Pınar and Boran [15] proposed a new distance criterion developed on the basis of q-ROFs in order 
to model uncertainties more effectively in MCDM problems such as supplier selection. In this context, 
both q-ROF TOPSIS and q-ROF ELECTRE methods were adapted and used in a group decision-making 
environment for the first time in the literature. In the study, the proposed distance criterion was both 
theoretically proven and its superiority was demonstrated by comparing it with other methods. 
Within the scope of the application, a case study was conducted for selecting the most suitable 
supplier for a construction company and the reliability of the obtained results was supported by 
comparative analyzes. The selected criteria were quality, delivery time, cost/price, service, 
technological level, financial position, flexibility, reliability, reputation and cooperation level. 

In their study, Gao et al., [16] proposed the q-RIVOF-based VIKOR model by combining the 
traditional VIKOR method with the q-RIVOFS theory. In the new model, the attributes in multi-
attribute group decision-making (MAGDM) problems are represented by q-rung interval-valued 
orthopair fuzzy numbers (q-RIVOFNs) to provide a richer set of information. In the study, the basic 
concepts and aggregation operators of q-RIVOFNs are first introduced, and then the VIKOR method 
is adapted to the q-RIVOFS environment and the calculation steps are presented. In order to 
demonstrate the proposed method in the study, an example is presented for medical consumable 
supplier selection using q-RIVOF information. Five potential medical consumable suppliers were 
ranked. Experts determined four attributes to evaluate five possible suppliers. These four attributes 
are environmental improvement quality, transportation convenience of suppliers, ease of 
transportation of the supplier, green image, environmental competencies. 

Riaz et al., [17] developed new prioritized aggregation operators based on q-ROFs in order to 
effectively manage uncertainties in the green supplier selection process. In their study, supplier 
evaluation within the scope of GSCM was considered as a multi-criteria group decision-making 
(MCGDM) problem and decision makers were enabled to express their evaluations under uncertain 



Journal of Intelligent Decision Making and Granular Computing 

Volume 1, Issue 1 (2025) 48-75 

53 
 

 

environmental conditions more precisely. The criteria considered in green supplier selection were 
determined as quality, cost, delivery, service, environmental factors and corporate social 
responsibility. 

Tian et al., [18] developed an innovative TODIM method based on q-ROFs that takes into account 
the psychological states of decision makers and the uncertainty in their evaluation information in 
order to make green supplier selection more effective. In their study, the TODIM method was 
integrated with the expectation theory and the risk tendencies and perceptual awareness of decision 
makers were integrated into the model. In this context, a new distance measure reflecting the herd 
mentality was defined and it was aimed to reflect the perceptual differences of decision makers more 
accurately. In addition, a four-dimensional criteria set called PCEM was created in order to 
systematize the supplier evaluation process: product, cooperation ability, environment and market. 
The sub-criteria used in this context are; interest level (𝑃1), quality (𝑃2) and service (𝑃3) for product; 
management capability (𝐶1), innovation (𝐶2) and technology level (𝐶3) for cooperation ability; 
environmentally friendly design (𝐸1), environmental competencies (𝐸2) and green image (𝐸3) for 
environmental factors; and for market size, financial performance (𝑀1) and green market share (𝑀2) 
were determined. 

Several of the criteria identified through studies conducted within the specified period are 
presented in Table 1. 

 
Table 1 
Several of the criteria were identified through research conducted between 2020 and 2025 
Criteria / 
Reference 

[2]  [3] [4]  [5] [6] [7] [9] [11] [18] [12] [13] [16] [14] [15] [17] 
Criteria 

Type 

Price  x x x x   x x x x x x   x x x Cost 

Delivery Time  x           x x     x   x x x Benefit  

Quality  x x x x x     x x x x   x x x Benefit  

Technology    x   x       x x x       x   Benefit  

Transportation                    x x         Benefit  

Flexibility                x           x   Benefit  

Capacity                               Benefit  

After Sales Service    x x x         x x     x x x Benefit  

Reliability      x   x   x             x   Benefit  

Communication                  x     x       Benefit  

Location                                Benefit  

Green Packaging  x x x   x x   x x x   x x   x Benefit  

 

3. Problem Definition 
This paper aims to evaluate the supplier selection criteria that shipyards—an essential part of the 

maritime industry—should consider in their procurement processes, using MCDM methods. To 
conduct this evaluation, a sample shipyard was selected, and common assessments were made based 
on the procurement activities carried out within this shipyard. During the evaluation process, twelve 
different criteria gathered from prior studies were submitted to six decision-makers in order to 
determine their respective weights. Using Saaty’s a 1–9 scale [19], the decision-makers were asked 
to assess the criteria based on their perceived level of importance. After the weighting of the criteria, 
three different alternatives were identified to implement the EDAS method based on q-ROFs. The 
decision-makers were then asked to evaluate these alternatives according to how well they satisfy 
the specified criteria, using the same assessment approach. With this study, it is intended to provide 
guidance to various companies operating in the maritime sector regarding the extent to which they 
should consider specific criteria in their supplier selection processes. Accordingly, Figure 1 represents 
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the hierarchical structure of the decision problem, while Figure 2 illustrates the methodological 
framework employed in the study. 

 

 
Fig. 1. The hierarchical structure of the decision problem 

 

 
Fig. 2. Methodological framework of the study 
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3.1. Definition of alternatives 
The alternatives encompass companies mainly engaged in the defense, maritime, and 

manufacturing industries within Türkiye. The firms selected for analysis are engaged in areas such as 
supplying materials and various services to shipyards, providing fire and damage control equipment, 
submarine batteries, spare parts for construction machinery, maritime supplies, marine outfitting 
equipment, and steel construction. The definition of alternatives is explained in the following: 

A1: This firm operates in the sale and import of spare parts for construction machinery. Focused 
on customer satisfaction, it offers fast and cost-effective solutions to its clients by leveraging its many 
years of experience and expert team. The company’s goal is to meet the needs and demands of a 
wide range of customers by providing the best service at affordable prices, while establishing and 
maintaining long-term business relationships. The company is located in the İzmir region. 

A2: The company’s vision is to deliver long-lasting maritime outfitting, equipment, steel 
construction, and repair/maintenance services in the international maritime sector. It is committed 
to maintaining the highest standards of safety for operations, human life, property, and the 
environment, all in full alignment with global industry standards and carried out by a skilled 
professional team. 

The mission is to ensure sustainable growth by embracing continuous improvement, operational 
efficiency, and productivity. The company aims to meet the evolving needs of the maritime industry 
with a modern, safety-focused approach, supported by qualified personnel and state-of-the-art 
equipment. Guided by its vision, it seeks to build a profitable and forward-looking future for both its 
employees and business partners. The company operates in the Istanbul region. 

A3: The firm was founded in 2000 with the aim of producing products that are not manufactured 
domestically, particularly Fire and Damage Control systems and submarine battery components. It 
aims to develop high-performance, advanced technology products and to stand out in international 
markets through innovations in design and material engineering. The company has the technology, 
human resources, knowledge, and experience in advanced industrial applications of non-ferrous 
metals and composite materials, in compliance with ISO 9001:2015 Quality Management System 
requirements. 

 
3.2. Definition of criteria 

Technical Criteria: 
C1: Price (cost): In a competitive market environment, it has become essential for suppliers to 

offer their products or services with a competitive pricing strategy. But a competitive price does not 
always imply providing the cheapest option. When the cost of a good or service is high, it can have a 
direct impact on the procurement process. Especially in cases where budget constraints exist, 
companies may be compelled to consider alternative products or turn to different suppliers [5]. 
Additionally, aligning pricing strategies with sustainability goals enhances supply chain efficiency and 
serves as a crucial criterion in selecting green suppliers [20]. In this study, the price criterion is 
included as a cost-type criterion. 

C2: Delivery time (benefit): The delivery time criterion encompasses factors such as the supplier’s 
quality of service, delivery capability, and flexibility in adapting to new conditions [12]. This criterion 
evaluates the supplier’s ability to deliver products or services accurately and on time. Ensuring that 
products are delivered to the end user within the requested and specified timeframe is of critical 
importance. In this study, the delivery time criterion is considered as a benefit-type factor. 

C3: Quality (benefit): The quality criterion refers to the supplier's ability to consistently deliver 
products or services in accordance with established standards and customer expectations. This 
criterion includes elements such as compliance with quality standards, rejection rates due to quality 
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issues, commitment to maintaining high-quality levels, and the implementation of formal quality 
management systems [12]. In this study, the quality criterion is included as a benefit-type criterion. 

C4: Technology (benefit): The technology criterion in supplier selection refers to the extent to 
which the company's goods and services are compatible with current technological advancements 
and their ability to adapt to innovations. Systems such as automation, artificial intelligence, and 
augmented reality are considered when evaluating this criterion [5]. In this study, the technology 
criterion has been included as a benefit type. 

C5: Transportation (benefit): This criterion reflects the efficiency of the supplier in delivering 
goods or services to the customer. In general, the transportation criterion covers many logistics 
activities, ensuring that the required goods and services reach the requesting units on time, 
accurately, and in a secure, undamaged condition. In this study, this criterion has been considered as 
a benefit type. 

C6: Flexibility (benefit): Supplier flexibility refers to the supplier's ability to quickly adapt to 
changing conditions and respond flexibly to varying demands. This criterion is said to enhance the 
overall flexibility of the supply chain, providing a competitive advantage in uncertain and dynamic 
market environments. Developing supply chain flexibility is especially important for creating an agile 
supply chain in uncertain market conditions [21]. In this study, the capacity criterion is considered as 
a benefit-type factor. 

C7: Capacity (benefit): This criterion covers the supplier’s technical capabilities, production 
competencies, and the maximum quantity of goods or services they can produce or deliver within a 
certain timeframe. It encompasses the supplier’s technical infrastructure, production capacity, and 
potential to meet demand. In this context, it reflects the supplier’s ability to respond to current and 
future needs. In this study, the capacity criterion is considered as a benefit-type factor. 

Social Criteria: 
C8: After sales service (benefit): After-sales service refers to activities provided during the 

warranty period, including field technical support, spare parts distribution, customer care, and 
accessory sales. These services are considered important for supporting customers and enhancing 
the value of the product [22]. It is also evaluated that good after-sales services can lead to long-term 
relationships with suppliers. In this study, the after-sales service criterion is used as a benefit type. 

C9: Reliability (benefit): In business-to-business research, supplier reliability is emphasized as a 
critical factor in the evaluation and selection processes of buying firms [23]. Research highlights the 
importance of a supplier’s ability to deliver goods or services promptly and in line with agreed 
specifications. In cases where a single supplier is used scenarios, product reliability tends to be the 
most critical factor influencing purchasing decisions [24]. In this study, the reliability criterion is 
considered as a benefit-type criterion. 

C10: Communication (benefit): This criterion represents the communication with the supplier. It 
refers to the ability to reach the supplier when needed, including in cases of quantity or order 
changes. The better the communication between the requester and the supplier, the higher the 
likelihood that the need will be met effectively. In this study, the communication criterion is 
considered as a benefit-type criterion. 

C11: Location (benefit): The location criterion refers to the geographical position of the supplier. 
It can be stated that the prompt fulfillment of the requested goods/services is directly related to the 
supplier’s location. A distant supplier location may lead to delays in orders. In this study, the location 
criterion is considered as a benefit-type criterion. 

C12: Green packaging (benefit): Green packaging can be defined as a sub-criterion that reflects 
the supplier’s commitment to environmental sustainability. This includes the use of recyclable or 
reusable packaging materials. Such packaging practices contribute to the reduction of harmful 
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environmental impacts and enhance the company’s environmentally responsible image. In this study, 
the green packaging criterion is considered as a benefit-type criterion. 
 
4. Methodology 
4.1. Intuitionistic Fuzzy Sets 

Intuitionistic fuzzy sets (IFS) were developed by Atanassov in 1986 as an extension of classical 
fuzzy sets. Traditional fuzzy sets are defined as a membership function that determines only one 
membership degree for each element. The IFS is comprised of three functions: the membership 
function μ(a), the non-membership function υ(a), and the hesitation function π(a) for each element. 
Given IFS's approach of integrating membership and non-membership degrees of sets, it enables the 
articulation of uncertainty and ambivalence in decision-making processes. Eq. (1) delineates the 
definition of IFS. 

𝐼𝐹𝑆 = {[𝑎, 𝜇(𝑎), 𝜈(𝑎)]: 𝑎 ∈ 𝐴}         (1) 

The membership function of the Intuitive Fuzzy Set assigns a membership degree to each 
element. This figure indicates the extent to which the element is associated with the set. The non-
membership function is employed to display the non-membership degree for each element, thereby 
illustrating the extent to which the element does not belong to the set. Eq. (2) delineates the 
necessary conditions for membership and non-membership functions. 

0 ≤ 𝜇(𝑎) + 𝜈(𝑎) ≤ 1          (2) 

The IFS hesitation function is used to model uncertainty about the degree of membership or non-
membership of an element. The degree of hesitation is calculated using Eq. (3). 

𝜋(𝑎) = 1 −  𝜇(𝑎) − 𝜈(𝑎)          (3) 

Korucuk et al., [25] explains that the use of three different functions in IFS — membership, non-
membership, and hesitation — represents uncertainty and fuzziness in a more flexible and detailed 
way. 
 
4.2. Fermatean Fuzzy Sets 

Senapati and Yager, [26] introduced Fermatean fuzzy sets (FFS) for use in MCDM methods. FFS 
ensure that membership values are more independent for decision-makers and take hesitation 
effects into account more efficiently. The FFS, an extension of the IFS, is defined by Eq. (4). 

𝐹𝐹𝑆 = {[𝑎, 𝜇𝐹(𝑎), 𝜈𝐹(𝑎) ]: 𝑎 ∈ 𝐴}         

0 ≤ 𝜇(𝑎) + 𝜈(𝑎) ≤ 1          (4) 

In FFS, functions 𝜇𝐹(𝑎): 𝐴 → [0,1] and 𝜈𝐹(𝑎) ∶ 𝐴 → [0,1] must satisfy the inequality in Eq. (5). 

0 ≤ 𝜇𝐹(𝑎) 3 + 𝜈𝐹(𝑎)3 ≤ 1         (5) 

In the FF set, the degree of hesitation is calculated by Eq. (6), 

𝜋𝐹(𝑎) = √1 − 𝜇𝐹(𝑎) 3 − 𝜈𝐹(𝑎)33
         (6) 

The most obvious difference between IFS and FFS lies in how they model uncertainty. In FFS, it is 
modeled using the Fermat function. This mathematical function defines the degree to which an 
element belongs to a set. It is expressed with certain parameters. These parameters are adjusted to 
reflect the degree of uncertainty or fuzziness of the problem. The hesitation function is not explicitly 
defined in FFS sets. However, in their study, Senapati and Yager [26] defined the degree of hesitation 
for FFS decision-making problems. 



Journal of Intelligent Decision Making and Granular Computing 

Volume 1, Issue 1 (2025) 48-75 

58 
 

 

FFSs may be more advantageous than IFSs in terms of computation because uncertainty is defined 
with only a single function. Senapati and Yager [26] compared the algebraic and topological 
properties of IFS and FFS spaces, showing that the FFS includes the IFS space as a subspace when the 
hesitation function is zero. 
 

𝑥 = (𝜇𝑥, 𝜈𝑥), 𝜇𝑥, 𝜈𝑥 ∈ [0,1] ve 0 ≤ 𝜇𝑥(𝑎) 3 + 𝜈𝑥(𝑎)3 ≤ 1, 𝑥 = (𝜇𝑥, 𝜈𝑥) , 𝑥1 = (𝜇𝑥1
, 𝜈𝑥1

) 𝑣𝑒 𝑥2 =

(𝜇𝑥2
, 𝜈𝑥2

) Let's say there are three FFNs. The following statements regarding FFN are shown: 

 

I. 𝜆𝑥 = (√1 − (1 − 𝜇𝑥
3)𝜆,

3
 (𝜈𝑥)

𝜆), 𝜆 > 0; 

II. 𝑥𝜆 = ((𝜇𝑥)
𝜆, √1 − (1 − 𝜈𝑥

3)𝜆3
) , 𝜆 > 0; 

III. 𝑥1 ∩ 𝑥2 = (𝑚𝑖𝑛{𝜇𝑥1
, 𝜇𝑥2

},𝑚𝑎𝑥{𝜈𝑥1
, 𝜈𝑥2

}); 

IV. 𝑦1 ∪ 𝑦2 = (𝑚𝑎𝑥{𝜇𝑦1
, 𝜇𝑦2

},𝑚𝑖𝑛{𝜈𝑦1
, 𝜈𝑦2

}); 

V. 𝑦1⨁𝑦2 = (√𝜇𝑦1

3 + 𝜇𝑦2

3 − 𝜇𝑦1

3 𝜇𝑦2

33
, 𝜈𝑦1

, 𝜈𝑦2
); 

VI. 𝑦1⨂𝑦2 = (𝜇𝑦1
, 𝜇𝑦2

, √𝜈𝑦1

3 + 𝜈𝑦2

3 − 𝜈𝑦1

3 𝜈𝑦2

33
); 

VII. 𝑦𝐶 = (𝜈𝑦, 𝜇𝑦). 

 

𝑦 = (𝜇𝑦, 𝜈𝑦) FFN score value is written as Eq. (7): 

𝑆(𝑦) = 𝜇𝑦 3 − 𝜈𝑦
3, −1 ≤ 𝑆(𝑦) ≤ 1        (7) 

𝑦 = (𝜇𝑦, 𝜈𝑦) FFN score positive value is calculated as Eq. (8): 

𝑆+(𝑦) = 1 + 𝑆(𝑦) = 1 + 𝜇𝑦 3 − 𝜈𝑦
3        (8) 

The FFN accuracy value 𝑦 = (𝜇𝑦, 𝜈𝑦), is calculated by 𝐴(𝑦) = 𝜇𝑦 3 + 𝜈𝑦
3 with 0 ≤ 𝐴(𝑦) ≤ 1. 

 
To compare two FFNs, 𝑦1 = (𝜇𝑦1

, 𝜈𝑦1
) 𝑎𝑛𝑑 𝑦2 = (𝜇𝑦2

, 𝜈𝑦2
), In decision-making problems, 

alternatives or criteria must be compared. Here, this comparison is made via the "score function," 
𝑆(𝑦), and the "accuracy function," 𝐴(𝑦). 

• If 𝑆(𝑦1) > 𝑆(𝑦2), 𝑡ℎ𝑒𝑛 𝑦
1
> 𝑦

2
, that is, the first number has a higher score, then that number 

is better. 

• If 𝑆(𝑦1) < 𝑆(𝑦2), 𝑡ℎ𝑒𝑛 𝑦
1
< 𝑦

2
, that is, the first number has a lower score, then that number 

is worse. 

• If 𝑆(𝑦1) = 𝑆(𝑦2), then: 

• If 𝐴(𝑦1) > 𝐴(𝑦2), 𝑡ℎ𝑒𝑛 𝑦1 > 𝑦2 

• If 𝐴(𝑦1) < 𝐴(𝑦2), then 𝑦1 < 𝑦2 

• 𝐴(𝑦1) = 𝐴(𝑦2), then 𝑦1 = 𝑦2 
 

It was developed to establish a stable and logical order among numbers in multi-criteria decision-
making problems involving uncertainty and fuzziness [27]. 
 
4.3. Fermatean Fuzzy SWARA Approach 

SWARA, which stands for Subjective Weight Allocation and Ranking Approach, is a method 
proposed by Kersulienė and her colleagues that is based on subjective criterion weighting. It is an 
MCDM method. With the SWARA method, decision-makers or experts can determine their own 
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priorities by considering the current conditions. Figure 1 shows the detailed flowchart of the FF-
SWARA method. The FF-SWARA procedure is defined as follows: 

I. First, create a decision matrix by considering the decision makers' evaluations of each 
influencing factor. These values are assigned using the linguistic terms in Table 2. 

 

While determining the importance levels of the criteria, the nine-point scale developed by Saaty 
was used. After the experts scored the criteria, they were asked to evaluate three different 
alternatives based on the criteria obtained from the literature. The linguistic terms used in the study 
are presented in Table 2. 

 
Table 2 
Linguistic terms 

Linguistic Terms m u 

Extremely High (EH) 0,95 0,15 

Very High (VH) 0,85 0,25 

High (H) 0,75 0,35 

Medium High (MH) 0,65 0,45 

Medium (M) 0,55 0,55 

Medium Low (ML) 0,45 0,65 

Low (L) 0,35 0,75 

Very Low (VL) 0,25 0,85 

Extremely Low (EL) 0,15 0,95 

 
II. The evaluations of the decision makers regarding the criteria are combined using the 

Fermatean Fuzzy Weighted Average (FFWA) operator in Eq. (9). This process takes into 
account the weight (𝜔𝑘) of each decision maker. In this study, all decision makers are 
given equal weight [28]. 

𝑧𝑗 = 𝑧(𝜇𝑗, 𝜈𝑗) =  (√1 − ∏ (1 − 𝜇𝑗𝑖
3 )

(𝜔𝑘)𝑛
𝑖=1

3

, √∏ (𝜈𝑗𝑖)
(𝜔𝑘)𝑛

𝑖=1

3

) j=1, 2, …m   (9) 

Eq. (9) allows decision makers to convert their evaluations of each criterion into a common 
Fermatean fuzzy number (FFN) [27-28]. 

III. The positive score value (S⁺(j)) for each criterion is calculated according to the formula in 
Eq. (10): 

𝑆+(𝑗) = 1 + 𝜇𝑗 
3 − 𝜈𝑗

3          (10) 

IV. It is sorted in decreasing order according to the calculated positive score values. 
V. The relative importance of each criterion (𝑐𝑠𝑗) is determined by the second-highest 

preference. In other words, the difference between the positive score value of a criterion 
and that of the previous criterion is considered. 

VI. The comparative coefficient (𝑐𝑐𝑗) for each criterion is calculated according to the rule of 

Eq. (11): 

𝐼𝑓 𝑗 = 1, 𝑡ℎ𝑒𝑛 𝑐𝑐𝑗 = 1          (11) 

𝑗 > 1, 𝑡ℎ𝑒𝑛 𝑐𝑐𝑗 = S+(j) + 1   

VII. The recalculated weights (𝑟𝑤𝑗)are calculated using Eq. (12): 
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𝑟𝑤𝑗 = {
1, 𝑗 = 1

𝑟𝑤𝑗−1

𝑐𝑐𝑗

, 𝑖 > 1}          (12) 

VIII. Final critical weight calculation is calculated using Eq. (13): 

𝑤𝑗 =
𝑟𝑤𝑗

∑ 𝑟𝑤𝑗
𝑚
𝑗=1

           (13) 

 
4.4. Q-Rung Orthopair fuzzy sets 

Intuitionistic fuzzy sets are characterized by degree of membership and non-membership 
functions, with the condition that the sum of these degrees is less than or equal to 1. However, the 
prevailing evidence suggests that the applicable region of IFSs is triangular, and access is limited as 
can be seen in Figure 3. To illustrate, when decision-makers present their evaluation for the degree 
of membership of the element with 0.4 and degree of non-membership of the element with 0.90, 
IFSs cannot be effective because the sum of these two values (0.4+0.90=1.30) is greater than 1. 

 

 
Fig. 3. The representation of geometric space intervals of q-ROFs, PFSs and IFSs 

 
In order to surmount this issue and extend the search space, Yager and Abbasov [29] introduced 

the notion of Pythagorean fuzzy sets (PFSs), which are general forms of the IFSs. These are 
characterized by the degree of membership and non-membership functions, with the condition that 
the sum of these degrees is less than or equal to 1 [30]. For instance, an expert evaluation (0.8, 0.5) 
can be managed with PFSs as 0.82 + 0.52 = 0.89. While this scenario is not feasible with IFS as 0.8 
+0.5 > 1, PFSs effectively address this limitation as can be seen in Figure 3. 

Recently, Yager [23] introduced q-ROFs, which serve as an extension of IFSs and PFSs. As 
illustrated in Figure 3, the geometric interpretations of the space of IFSs, PFSs, and q-ROFSs are 
demonstrated. The sum of the 𝑞th powers of the membership and non-membership degrees of q-
ROFSs is constrained to one [31]. As the rung 𝑞 increases, the allowable area of the orthopyres 
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escalates, and, therefore, more orthopyres meet the constraints. Consequently, q-ROF numbers 
provide a flexible means of expressing a broader scope of fuzzy information [15]. Recently, there has 
been an uptick in the interest surrounding q-ROFSs, as evidenced by the works of [32,33]. 
Consequently, we have opted to utilize q-ROFSs in this study, a decision that is informed by the 
advantageous nature of the freedom to choose the power degree. The present study puts forth a q-
ROFS-based integrated full consistency method (FUCOM) and combined approach. 

In this section, we introduce some fundamental definitions of q-ROFs. 
𝑥 = (𝜇𝑥, 𝜈𝑥) be a q-ROFN, the score function S(x) of x can be expressed in Eq. (14) by Wei et al., 

[34]: 

𝑆(𝑥) =
1

2
(1 + 𝜇𝑥

𝑞 + 𝜈𝑥
𝑞)          (14) 

Peng and Dai [35] defined the score function differently as shown in Eq. (15): 

𝑆(𝑥) =
1

3
(𝜇𝑥

𝑞 − 2 ∗ 𝜈𝑥
𝑞 − 1) +

𝜆

3
(𝜇𝑥

𝑞 + 𝜈𝑥
𝑞 + 2)       (15) 

Let 𝑥𝑖 = (𝜇𝑥𝑖
, 𝜈𝑥𝑖

) 𝑖 = 1,2, … , 𝑛 be set of q-ROFNs and 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑛)𝑇 be weight vector of 

𝑥𝑖  with ∑ 𝑤𝑖
𝑛
𝑖=1 = 1 and 𝑤𝑖 ∈ [0,1]. Q-rung orthopair fuzzy weighted average (q-ROFWA) and q-rung 

orthopair weighted geometric (q-ROFWG) operators can be expressed by Liu and Wang [36], as 
illustrated in Eq. (16) and Eq. (17):  

q-ROFWA (𝑥1, 𝑥2, … , 𝑥𝑛) = (1 − (∏ (1 − 𝜇𝑥𝑖

𝑞 )
𝑤𝑖𝑛

𝑖=1 )
1

𝑞, ∏ 𝜈𝑥𝑖

𝑊𝑖𝑛
𝑖=1 )    (16) 

q-ROFWG (𝑥1, 𝑥2, … , 𝑥𝑛) = (∏ 𝛾𝑄𝑖

𝑤𝑖𝑛
𝑖=1 , (1 − ∏ (1 − 𝛿𝑄𝑖

𝑞 )
𝑤𝑖𝑛

𝑖=1 )
1

𝑞)      (17) 

The decision matrix based on q-ROFs, which is to be created as a result of expert evaluations, is 
given in Table 3, and the aggregated q-ROFs decision matrix is provided in Table 4. 

 
Table 3 
The expert evaluation based on q-ROFs 

Criteria 
Alternatives 

𝑍1 𝑍2 … 𝑍𝑏 

𝐶1 ([𝛾11𝑙  𝛿11𝑙] ) ([𝛾12𝑙  𝛿12𝑙] ) … ([𝛾1𝑏𝑙  𝛿1𝑏𝑙] ) 

𝐶2 ([𝛾21𝑙  𝛿21𝑙] ) ([𝛾22𝑙  𝛿22𝑙] ) … ([𝛾2𝑏𝑙 𝛿2𝑏𝑙] ) 

… … 
… 
 

… … 

𝐶𝑎 ([𝛾𝑎1𝑙  𝛿𝑎1𝑙] ) ([𝛾𝑎2𝑙  𝛿𝑎2𝑙] ) … ([𝛾𝑎𝑏𝑙  𝛿𝑎𝑏𝑙] ) 

 
Table 4 
The aggregated q-ROF desicion matrix 

Criteria 
Alternatives 

𝑍1 𝑍2 … 𝑍𝑏 

𝐶1 ([𝛾11 𝛿11] ) ([𝛾12 𝛿12] ) … ([𝛾1𝑏 𝛿1𝑏] ) 

𝐶2 ([𝛾21 𝛿21] ) ([𝛾22 𝛿22] ) … ([𝛾2𝑏 𝛿2𝑏] ) 

… … 
… 
 

… … 

𝐶𝑎 ([𝛾𝑎1 𝛿𝑎1] ) ([𝛾𝑎2 𝛿𝑎2] ) … ([𝛾𝑎𝑏 𝛿𝑎𝑏] ) 
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4.5. EDAS method 
In 2015, EDAS method was introduced into the literature by Keshavarz Ghorabaee et al., [37]. 

Despite being a relatively new approach, the EDAS method has been widely applied in the literature 
as part of hybrid models to solve various decision-making problems. The first step in the EDAS 
method involves the construction of the decision matrix (𝑥), which is presented in Eq. (18). In the 
decision matrix, 𝑥𝑖𝑗 represents the performance of alternative 𝑖 with respect to criterion 𝑗. The steps 

of the proposed model are described as follows [38]: 

𝑌 = [𝑌𝑖𝑗]𝑎𝑥𝑏
=

[
 
 
 
 
 
𝑦11 𝑦12 … 𝑦1𝑏 
𝑦11 𝑦12 … 𝑦1𝑏 
…    …    …  … 
𝑦𝑖1 𝑦𝑖2 … 𝑦𝑖𝑏 
…    …    …  … 
𝑦𝑎1 𝑦𝑎2 … 𝑦𝑎𝑏 ]

 
 
 
 
 

         (18) 

Subsequently, the mean solution is calculated based on all the specified criteria. The following 
assertion is made: 

The determination of the mean solutions is presented in Eq. (19) and Eq. (20). 

𝐴𝑉𝑗 =
∑ 𝑌𝑖𝑗

𝑚
𝑖

𝑚
           (19) 

𝐴𝑉 = [𝐴𝑉𝑗]1𝑥𝑏
           (20) 

In the subsequent step, a positive distance matrix (PDA) from the mean given in Eq. (21) and a 
negative distance matrix (NDA) from the mean given in Eq. (22) are designed for each criterion. In 
the event that the criteria are expressed in terms of utility, the PDA and NDA matrices are formed by 
the following Eq. (23) and Eq. (24), respectively. In the event that cost is the primary criterion, the 
PDA and NDA matrices are calculated using Eq. (25) and Eq. (26), respectively.    

𝑃𝐷𝐴 = [𝑃𝐷𝐴𝑖𝑗]𝑎𝑥𝑏
          (21) 

𝑁𝐷𝐴 = [𝑁𝐷𝐴𝑖𝑗]𝑎𝑥𝑏
          (22) 

𝑃𝐷𝐴𝑖𝑗 =
max (0,(𝑌𝑖𝑗−𝐴𝑉𝑗))

𝐴𝑉𝑗
          (23) 

𝑁𝐷𝐴𝑖𝑗 =
max (0,(𝐴𝑉𝑗−𝑦𝑖𝑗))

𝐴𝑉𝑗
          (24) 

𝑃𝐷𝐴𝑖𝑗 =
max (0,(𝐴𝑉𝑗−𝑦𝑖𝑗))

𝐴𝑉𝑗
          (25) 

𝑁𝐷𝐴𝑖𝑗 =
𝑚𝑎𝑥 (0,(𝑦𝑖𝑗−𝐴𝑉𝑗))

𝐴𝑉𝑗
          (26) 

Subsequently, the weighted total PDA Eq. (27) and NDA Eq. (28) for each alternative are 
calculated. 𝑣𝑗 , "𝑗" indicates the weight of the measure. 

𝑆𝑃𝑖 = ∑ 𝑣𝑗𝑃𝐷𝐴𝑖𝑗
𝑛
𝑗=1           (27) 

𝑆𝑁𝑖 = ∑ 𝑣𝑗𝑁𝐷𝐴𝑖𝑗
𝑛
𝑗=1           (28) 

For each of the aforementioned alternatives, the 𝑆𝑃 and 𝑆𝑁 values are normalized using the 
following Eq. (29) and Eq. (30). 
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𝑁𝑆𝑃𝑖 =
𝑆𝑃𝑖

𝑚𝑎𝑥𝑖(𝑆𝑃𝑖)
           (29) 

𝑁𝑆𝑁𝑖 = 1 −
𝑆𝑁𝑖

𝑚𝑎𝑥𝑖(𝑆𝑁𝑖)
          (30) 

The evaluation score (ES) is calculated using Eq. (31) for each alternative. 

𝐴𝑆𝑖 =
1

2
(𝑁𝑆𝑃𝑖 + 𝑁𝑆𝑁𝑖)          (31) 

It is imperative that the 𝐴𝑆𝑖 value satisfy the condition of 0 ≤𝐴𝑆𝑖≤1. The final step in the evaluation 
process involves ranking the alternatives in descending order of their evaluation score. The first-
ranked alternative is regarded as the optimal choice, while the last-ranked alternative is designated 
as the least favorable option. 
 

5. Case Study 
One of the key stages of this study is the expert selection process. The experts involved in the 

study consist of six individuals who actively work in procurement and purchasing departments and 
have more than 10 years of professional experience. Interviews were conducted with the experts 
individually and via telephone to determine the weights of the criteria. 
A total of 12 different criteria identified through a literature review were grouped under 2 main 
criteria categories. In the next stage, experts were asked to assess the importance levels of these 12 
sub-criteria grouped under the 2 main criteria. 
 
5.1. Proposed Methodology Results 

This section introduces a novel MCDM approach. The subsequent discourse delves into the 
interplay between Fermatean fuzzy and SWARA methodologies, drawing parallels with earlier 
research. Subsequently, the q-ROFs EDAS method for multi-criteria selection is elucidated in detail. 
The primary flow of the Fermatean SWARA method for determining criteria weights and the q-ROFs 
EDAS method for selecting the optimal alternative among options is hereby presented. This approach 
will provide a ranking of three alternatives from best to worst. 

Initially, it is imperative to ascertain the pertinent evaluation criteria for the problem at hand. In 
this study, twelve key criteria have been identified: The factors to be considered in the analysis 
include price, delivery time, quality, technology, transportation, flexibility, capacity, after-sales 
service, reliability, communication, location, and green packaging. Subsequent to the identification 
of these criteria, experts will be consulted to assess the importance of each criterion. Concurrently, 
the individual weights for each expert (𝐸1, 𝐸2, ..., 𝐸𝑘) will be calculated. 

The determination of criteria weights is a critical phase, relying heavily on expert judgment. Table 
5 presents the initial linguistic assessments provided by experts for each criterion. These qualitative 
linguistic expressions are subsequently transformed into quantitative fuzzy numbers, as detailed in 
Table 6, to facilitate the calculation of evaluation criteria weights. 
 

Table 5 
With using linguistic terms criteria evaluating results 

Experts 
Criteria 

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7 𝐶8 𝐶9 𝐶10 𝐶11 𝐶12 

Expert 1 (𝐸1) EH EH EH VH M H ML M M VH H ML 

Expert 2 (𝐸2) VH VH EH VH VH EH H H VH EH M H 

Expert 3 (𝐸3) EH VH VH VH H H M M H M M M 

Expert 4 (𝐸4) EH EH EH EH H EH H MH H VH MH M 

Expert 5 (𝐸5) VH VH EH EH VH EH VH H H VH H H 

Expert 6 (𝐸6) EH EH VH VH VH VH MH MH VH EH M MH 
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Table 6 
Results presentation using the q-ROF number framework 

Experts 
Criteria 

C1  C2  C3  C4  C5  C6  

E1 0.95 0.15 0.95 0.15 0.95 0.15 0.85 0.25 0.55 0.55 0.75 0.35 
E2 0.85 0.25 0.85 0.25 0.95 0.15 0.85 0.25 0.85 0.25 0.95 0.15 
E3 0.95 0.15 0.85 0.25 0.85 0.25 0.85 0.25 0.75 0.35 0.75 0.35 
E4 0.95 0.15 0.95 0.15 0.95 0.15 0.95 0.15 0.75 0.35 0.95 0.15 
E5 0.85 0.25 0.85 0.25 0.95 0.15 0.95 0.15 0.85 0.25 0.95 0.15 
E6 0.95 0.15 0.95 0.15 0.85 0.25 0.85 0.25 0.85 0.25 0.85 0.25 

Experts 
Criteria 

 C7  C8  C9  C10  C11  C12  

E1 0.35 0.45 0.65 0.55 0.55 0.55 0.55 0.85 0.25 0.75 0.35 0.45 0.65 
E2 0.15 0.75 0.35 0.75 0.35 0.85 0.25 0.95 0.15 0.55 0.55 0.75 0.35 
E3 0.35 0.55 0.55 0.55 0.55 0.75 0.35 0.55 0.55 0.55 0.55 0.55 0.55 
E4 0.15 0.75 0.35 0.65 0.45 0.75 0.35 0.85 0.25 0.65 0.45 0.55 0.55 
E5 0.15 0.85 0.25 0.75 0.35 0.75 0.35 0.85 0.25 0.75 0.35 0.75 0.35 
E6 0.25 0.65 0.45 0.65 0.45 0.85 0.25 0.95 0.15 0.55 0.55 0.65 0.45 

 
In this phase, a consolidated decision matrix is created for each criterion evaluated by the experts. 

The elements of this matrix are derived using the Fermatean fuzzy method depending on the specific 
application. The belonging and non-belonging values used in this method are presented in Table 7. 
Based on these values and the expression in Eq. (9), the final values shown in Table 8 are calculated 
to express each criterion as a single variable. 
 
Table 7 
Fermatean Fuzzy Weighted Average (FFWA) operator 

Main Criterias Sub Criterias μ 

Technical 

Price 0.722824 0.853246 0.722824 0.722824 0.853246 0.722824 

Delivery time 0.722824 0.853246 0.853246 0.722824 0.853246 0.722824 

Quality 0.722824 0.722824 0.853246 0.722824 0.722824 0.853246 

Technology 0.853246 0.853246 0.853246 0.722824 0.722824 0.853246 

Transportation 0.970127 0.853246 0.912719 0.912719 0.853246 0.853246 

Flexibility 0.912719 0.722824 0.912719 0.722824 0.722824 0.853246 

Capacity 0.984202 0.912719 0.970127 0.912719 0.853246 0.947895 

Social 

After sales service 0.970127 0.912719 0.970127 0.947895 0.912719 0.947895 

Reliability 0.970127 0.853246 0.912719 0.912719 0.912719 0.853246 

Communication 0.853246 0.722824 0.970127 0.853246 0.853246 0.722824 

Location 0.912719 0.970127 0.970127 0.947895 0.912719 0.970127 
Green Packaging 0.984202 0.912719 0.970127 0.970127 0.912719 0.947895 

 
The positive score values for each criterion are calculated using the formula in Eq. (10), resulting 

in the data presented in Table 9. Subsequently, these obtained values are ranked in descending order. 
For each criterion, its importance degree (𝑐𝑠𝑗 value) is calculated. Since the values defined in Table 

10 are derived starting with the first criterion, for subsequent criteria, we consider the difference 
between the positive score value of the current criterion and that of the preceding criterion. 
 

  



Journal of Intelligent Decision Making and Granular Computing 

Volume 1, Issue 1 (2025) 48-75 

65 
 

 

Table 7 
Continued 

Main Criterias Sub Criterias ν 

Technical 

Price 0.762603 0.820335 0.762603 0.762603 0.820335 0.762603 

Delivery time 0.762603 0.820335 0.820335 0.762603 0.820335 0.762603 

Quality 0.762603 0.762603 0.820335 0.762603 0.762603 0.820335 

Technology 0.820335 0.820335 0.820335 0.762603 0.762603 0.820335 

Transportation 0.91814 0.820335 0.86073 0.86073 0.820335 0.820335 

Flexibility 0.86073 0.762603 0.86073 0.762603 0.762603 0.820335 

Capacity 0.940315 0.86073 0.91814 0.86073 0.820335 0.892193 

Social 

After sales service 0.91814 0.86073 0.91814 0.892193 0.86073 0.892193 

Reliability 0.91814 0.820335 0.86073 0.86073 0.86073 0.820335 

Communication 0.820335 0.762603 0.91814 0.820335 0.820335 0.762603 

Location 0.86073 0.91814 0.91814 0.892193 0.86073 0.91814 
Green Packaging 0.940315 0.86073 0.91814 0.91814 0.86073 0.892193 

 

Table 8 
Fermatean fuzzy number (FFN) 

μ ν 
0.4164 0.6106 
0.3833 0.6256 
0.4164 0.6106 
0.3482 0.6410 
0.2052 0.7214 
0.3549 0.6460 
0.1367 0.7765 
0.1102 0.7922 
0.1872 0.7331 
0.3197 0.6655 
0.1033 0.7998 
0.0990 0.8062 

 

 

Table 9 
Ranking of positive score value 
Main Criterias Sub Criterias Positive Score S+ 

Tehnical 

Price 0.8446 
Delivery time 0.8115 
Quality 0.8446 
Technology 0.7788 
Transportation 0.6331 
Flexibility 0.7752 
Capacity 0.5344 

Social 

After sales service 0.5042 
Reliability 0.6126 
Communication 0.7379 
Location 0.4895 
Green Packaging 0.4770 
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Table 10 
The relative importance of each criterion 
Criteria                                                          𝑐𝑠𝑗  

Quality - 

Price 0 

Delivery time 0.0332 

Technology 0.0326 

Flexibility 0.0037 

Communication 0.0373 

Transportation 0.1048 

Reliability 0.0206 

Capacity 0.0781 

After sales service 0.0302 

Location 0.0147 

Green Packaging 0.0125 

 
For the comparative coefficient (𝑐𝑐𝑗), if 𝑗 = 1, the comparative coefficient is 1. In other cases, it's 

calculated as the sum of the score value defined in Eq.  (11) and the previous comparative coefficient 
value in Table 11. 
 

Table 11 
The comparative coefficient (𝑐𝑐𝑗) for each criterion 

Criteria                                                                            𝑐𝑐𝑗 

Quality 1 
Price 1.8446 
Delivery time 1.8115 
Technology 1.7788 
Flexibility 1.7752 
Communication 1.7379 
Transportation 1.6331 
Reliability 1.6126 
Capacity 1.5344 
After sales service 1.5042 
Location 1.4895 
Green Packaging 1.4770 

 
    Using Eq. (12), If 𝑗 = 1, the criterion's weight is set to 1. Otherwise, it's calculated by dividing the 
previously computed weight by the criterion's comparative coefficient value, which then yields the 
values in Table 12. 

Finally, to calculate the final criterion weights, Eq. (13) is utilized. Each criterion's weight is 
proportioned to the total sum of all criterion weights, yielding the final criterion weights presented 
in Table 13. 

 
  



Journal of Intelligent Decision Making and Granular Computing 

Volume 1, Issue 1 (2025) 48-75 

67 
 

 

Table 12 
The recalculated weights 

𝑟𝑤𝑗 

Quality 1 

Price 0.5421 

Delivery time 0.2993 

Technology 0.1682 

Flexibility 0.0948 

Communication 0.0545 

Transportation 0.0334 

Reliability 0.0207 

Capacity 0.0135 

After sales service 0.009 

Location 0.006 

Green Packaging 0.0041 

Total 2.245605 

 
Table 13 

Final critical weights 
Normalized Weights 
Quality 0.4453 
Price 0.2414 
Delivery time 0.1333 
Technology 0.0749 
Flexibility 0.0422 
Communication 0.0243 
Transportation 0.0149 
Reliability 0.0092 
Capacity 0.006 
After sales service 0.004 
Location 0.0027 
Green Packaging 0.0018 

 
Q-ROFs are highly effective in addressing uncertainty and comprehensiveness within decision-

making processes. Unlike traditional fuzzy sets, q-ROFs offer a broader range of membership degrees 
through their three parameters, which encompass the measurement of uncertainty and the degree 
of evaluation. This enhanced flexibility allows for better modeling of complex uncertain situations. 
Consequently, q-ROFs improve the ability to model expert opinions and preferences with greater 
adaptability, enabling experts to make more rational decisions and more easily consolidate their 
views. Table 14 presents the fuzzy linguistic terms for 12 criteria across three alternatives, as defined 
by five industry experts. These linguistic variables were then converted into the format shown in 
Table 15, utilizing the conversions specified in Table 2. Subsequently, to express the fuzzy variables 
from the five experts as a single variable, Table 16 was generated using Eq. (16), developed by Liu 
and Wang. 
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Table 14 

Results of evaluations conducted using language scales. 

Experts Alternatives 
Criteria 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

Expert 1 

A1 MH MH M MH H VH VH VH EH EH VH M 

A2 L L MH VH H VH EH VH MH H H M 

A3 MH MH MH VH H VH VH VH H H H M 

Expert 2 

A1 H H H M M MH M VH VH EH H MH 

A2 EH H VH H ML ML H H M H MH H 

A3 H H VH MH M ML H VH H H MH MH 

Expert 3 

A1 MH M H MH VH VH MH H M H H MH 

A2 VH M VH MH H VH H H ML MH H MH 

A3 MH M H MH H VH H H ML H H MH 

Expert 4 

A1 MH H VH MH H EH VH EH MH H VH H 

A2 H MH EH H MH VH VH H MH H H H 

A3 H H EH H MH EH VH EH MH H H H 

Expert 5 

A1 H MH H H VH H MH VH VH EH VH H 

A2 EH MH H H H MH H H MH H H H 

A3 H H H H VH H H H VH VH H H 

 
Table 15 
Presentation of evaluation outcomes using the q-ROF system 

Experts Alt. 
Criteria 

C1  C2  C3  C4  C5  C6  

E1 
A1 0.65 0.45 0.65 0.45 0.55 0.55 0.65 0.45 0.75 0.35 0.85 0.25 
A2 0.35 0.75 0.35 0.75 0.65 0.45 0.85 0.25 0.75 0.35 0.85 0.25 

A3 0.65 0.45 0.65 0.45 0.65 0.45 0.85 0.25 0.75 0.35 0.85 0.25 

E2 

A1 0.75 0.35 0.75 0.35 0.75 0.35 0.55 0.55 0.55 0.55 0.65 0.45 

A2 0.95 0.15 0.75 0.35 0.85 0.25 0.75 0.35 0.45 0.65 0.45 0.65 

A3 0.75 0.35 0.75 0.35 0.85 0.25 0.65 0.45 0.55 0.55 0.45 0.65 

E3 

A1 0.65 0.45 0.55 0.55 0.75 0.35 0.65 0.45 0.85 0.25 0.85 0.25 

A2 0.85 0.25 0.55 0.55 0.85 0.25 0.65 0.45 0.75 0.35 0.85 0.25 

A3 0.65 0.45 0.55 0.55 0.75 0.35 0.65 0.45 0.75 0.35 0.85 0.25 

E4 

A1 0.65 0.45 0.75 0.35 0.85 0.25 0.65 0.45 0.75 0.35 0.95 0.15 

A2 0.75 0.35 0.65 0.45 0.95 0.15 0.75 0.35 0.65 0.45 0.85 0.25 

A3 0.75 0.35 0.75 0.35 0.95 0.15 0.75 0.35 0.65 0.45 0.95 0.15 

E5 

A1 0.75 0.35 0.65 0.45 0.75 0.35 0.75 0.35 0.85 0.25 0.75 0.35 

A2 0.95 0.15 0.65 0.45 0.75 0.35 0.75 0.35 0.75 0.35 0.65 0.45 

A3 0.75 0.35 0.75 0.35 0.75 0.35 0.75 0.35 0.85 0.25 0.75 0.35 

 

To consolidate the fuzzy values into a single unknown, we use Eq. (15), proposed by Peng and Dai, 
to generate the score matrix shown in Table 17. Following this, we apply the steps of the EDAS 
method, which is a MCDM technique. 

First, we calculate the average for each criterion within the obtained matrix, as presented in Table 
18. Subsequently, we construct a Positive Distance from Average (PDA) matrix and a Negative 
Distance from Average (NDA) matrix for each criterion. These are based on Eq. (21) for PDA and Eq. 
(22) for NDA. 
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Table 15 
Continued 

Experts Alt. 
Criteria 

C7  C8  C9  C10  C11  C12  

E1 

A1 0.85 0.25 0.85 0.25 0.95 0.15 0.95 0.15 0.85 0.25 0.55 0.55 

A2 0.95 0.15 0.85 0.25 0.65 0.45 0.75 0.35 0.75 0.35 0.55 0.55 

A3 0.85 0.25 0.85 0.25 0.75 0.35 0.75 0.35 0.75 0.35 0.55 0.55 

E2 

A1 0.55 0.55 0.85 0.25 0.85 0.25 0.95 0.15 0.75 0.35 0.65 0.45 

A2 0.75 0.35 0.75 0.35 0.55 0.55 0.75 0.35 0.65 0.45 0.75 0.35 

A3 0.75 0.35 0.85 0.25 0.75 0.35 0.75 0.35 0.65 0.45 0.65 0.45 

E3 

A1 0.65 0.45 0.75 0.35 0.55 0.55 0.75 0.35 0.75 0.35 0.65 0.45 

A2 0.75 0.35 0.75 0.35 0.45 0.65 0.65 0.45 0.75 0.35 0.65 0.45 

A3 0.75 0.35 0.75 0.35 0.45 0.65 0.75 0.35 0.75 0.35 0.65 0.45 

E4 

A1 0.85 0.25 0.95 0.15 0.65 0.45 0.75 0.35 0.85 0.25 0.75 0.35 

A2 0.85 0.25 0.75 0.35 0.65 0.45 0.75 0.35 0.75 0.35 0.75 0.35 

A3 0.85 0.25 0.95 0.15 0.65 0.45 0.75 0.35 0.75 0.35 0.75 0.35 

E5 

A1 0.65 0.45 0.85 0.25 0.85 0.25 0.95 0.15 0.85 0.25 0.75 0.35 

A2 0.75 0.35 0.75 0.35 0.65 0.45 0.75 0.35 0.75 0.35 0.75 0.35 

A3 0.75 0.35 0.75 0.35 0.85 0.25 0.85 0.25 0.75 0.35 0.75 0.35 

 
Table 16 
q-ROFWA decision matrix 
  0.241   0.133   0.445   0.075   0.015   0.042   

Alternative/ 
Criteria 

C1 C2 C3 C4 C5 C6 

A1 0.740 0.407 0.740 0.424 0.830 0.358 0.732 0.445 0.839 0.335 0.928 0.272 
A2 0.937 0.272 0.732 0.493 0.928 0.272 0.830 0.344 0.744 0.417 0.844 0.340 
A3 0.744 0.387 0.744 0.403 0.928 0.290 0.830 0.362 0.830 0.377 0.928 0.292 

  0.006   0.004   0.009   0.024   0.003   0.002   

Alternative/ 
Criteria 

C7 C8 C9 C10 C11 C12 

A1 0.839 0.370 0.928 0.241 0.928 0.297 0.943 0.211 0.844 0.286 0.740 0.424 
A2 0.928 0.276 0.830 0.327 0.645 0.504 0.748 0.368 0.748 0.368 0.744 0.403 
A3 0.839 0.306 0.928 0.258 0.830 0.389 0.830 0.327 0.748 0.368 0.740 0.424 

 
Table 17 
q-ROFs the score matrix 
Alternative/ 
Criteria 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

A1 0.2000 0.2000 0.2000 0.2000 0.2000 0.2037 0.2000 0.2037 0.2037 0.2111 0.2000 0.2000 
A2 0.2074 0.2000 0.2037 0.2000 0.2000 0.2000 0.2037 0.2000 0.2000 0.2000 0.2000 0.2000 
A3 0.2000 0.2000 0.2037 0.2000 0.2000 0.2037 0.2000 0.2037 0.2000 0.2000 0.2000 0.2000 

 
Table 18 
All of Criteria Average matrix 
Alternative/ 
Criteria 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

A1 0.2000 0.2000 0.2000 0.2000 0.2000 0.2037 0.2000 0.2037 0.2037 0.2111 0.2000 0.2000 
A2 0.2074 0.2000 0.2037 0.2000 0.2000 0.2000 0.2037 0.2000 0.2000 0.2000 0.2000 0.2000 
A3 0.2000 0.2000 0.2037 0.2000 0.2000 0.2037 0.2000 0.2037 0.2000 0.2000 0.2000 0.2000 
Average 0.2025 0.2000 0.2025 0.2000 0.2000 0.2025 0.2012 0.2025 0.2012 0.2037 0.2000 0.2000 
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If the criteria are expressed in terms of benefit, the PDA and NDA matrices are formed using Eq. 
(23) and Eq. (24), respectively. Conversely, if cost is the primary criterion, the PDA and NDA matrices 
are calculated using Eq. (25) and Eq. (26), respectively, leading to the values in Tables 19 and 20. 

 
Table 19 
Positive distance matrix 
Alternative/ 
Criteria 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

A1 0.0122 0.0000 0.0000 0.0000 0.0000 0.0061 0.0000 0.0061 0.0123 0.0362 0.0000 0.0000 
A2 0.0000 0.0000 0.0061 0.0000 0.0000 0.0000 0.0123 0.0000 0.0000 0.0000 0.0000 0.0000 
A3 0.0122 0.0000 0.0061 0.0000 0.0000 0.0061 0.0000 0.0061 0.0000 0.0000 0.0000 0.0000 

  

Table 20 

Negative distance matrix 
Alternative/ 
Criteria 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

A1 0.0000 0.0000 0.0122 0.0000 0.0000 0.0000 0.0061 0.0000 0.0000 0.0000 0.0000 0.0000 
A2 0.0244 0.0000 0.0000 0.0000 0.0000 0.0122 0.0000 0.0122 0.0062 0.0181 0.0000 0.0000 
A3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0061 0.0000 0.0062 0.0181 0.0000 0.0000 

 
 

The positive distance matrix and negative distance matrix are multiplied by the weights obtained 
in Table 13. Subsequently, for each alternative, the sum of the products of the criteria and their 
respective weights is calculated, resulting in the creation of Table 21 and Table 22. 
 
Table 21 
Weighted PDA matrix 

 0.2414 0.1333 0.4453 0.0749 0.0149 0.0422 0.0060 0.0040 0.0092 0.0243 0.0027 0.0018 
Alternative/ 
Criteria 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

A1 0.0513 0.0002 0.0000 0.0000 0.0010 0.0032 0.0000 0.0005 0.0026 0.0113 0.0003 0.0000 
A2 0.0000 0.0000 0.0534 0.0031 0.0000 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000 
A3 0.0485 0.0022 0.0351 0.0020 0.0000 0.0031 0.0000 0.0004 0.0000 0.0000 0.0000 0.0000 

 
Table 22 
Weighted NDA matrix 

 0.2414 0.1333 0.4453 0.0749 0.0149 0.0422 0.0060 0.0040 0.0092 0.0243 0.0027 0.0018 

Alternative/ 
Criteria 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

A1 0.0000 0.0000 0.0480 0.0164 0.0000 0.0000 0.0254 0.0000 0.0000 0.0000 0.0000 0.0012 
A2 0.0998 0.0023 0.0000 0.0000 0.0010 0.0063 0.0000 0.0009 0.0017 0.0064 0.0002 0.0000 
A3 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0004 0.0000 0.0008 0.0049 0.0002 0.0000 

 

For all alternatives, the 𝑆𝑝 and 𝑆𝑛 values are normalized using Eq. (29) and Eq (30). Subsequently, 

Eq. (31) is used to calculate the score values, yielding the 𝐴𝑆𝑖 results presented in Table 23. 
 

Table 23 
The final score values of alternatives for 𝑞 = 5 

Alternatives NSPi NSNi ASi Rank 

A1 0.7716 0.2323 0.5019 2 

A2 0.6306 0.0000 0.3153 3 

A3 1.0000 0.9458 0.9729 1 
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5.2. Validition of the results 
This study employs the EDAS technique for sensitivity analysis. The method assesses alternatives 

based on their distance from the mean solution point, typically yielding risk-averse decisions 
compared to extreme value-based methods. A group of five experts evaluated three alternatives as 
part of the analysis phase. The weights of the criteria were calculated using the Fermatean Fuzzy-
SWARA technique. 

In the final step of the EDAS method, each alternative was ranked based on its performance 
scores, resulting in a consistent ordering across most scenarios. According to the evaluation results, 
Alternative 𝐴3 demonstrated the highest performance, followed by 𝐴1 and 𝐴2, respectively. The 
comparison of the results obtained using different values of the parameter 𝑞 (ranging from 1 to 100) 
under the q-ROFs environment showed that the overall ranking remained completely stable, with no 
variations observed across the tested range.  This clearly indicates the robustness and reliability of 
the proposed model.  
       As illustrated in Table 24, the ranking of the alternatives 𝐴3 > 𝐴1 > 𝐴2 remained unchanged at 
both 𝑞 =  5 and 𝑞 =  100. The consistency of the results across all values of 𝑞 confirms the model’s 
stability and insensitivity to changes in the 𝑞 parameter. 

 
Table 24 
Comparative analysis of outcomes for 𝑞-values 5 and 100 

Alternatives q-ROFS EDAS 𝑞 = 5 q-ROFS EDAS 𝑞 = 100 

A1 2 2 

A2 3 3 

A3 1 1 

 
Moreover, Table 25 presents a summary of rankings across selected scenarios (e.g., q = 5, 14, 45, 

68, and 100). It confirms that the ranking of the alternatives 𝐴3 > 𝐴1 > 𝐴2 remains completely 
consistent across all examined values of the parameter 𝑞. Unlike cases where ranking shifts occur 
due to changes in 𝑞, the results here demonstrate that the q-ROFs framework can deliver highly 
stable decision outcomes. This consistent behavior highlights the robustness of the proposed model 
against variations in the q parameter, reinforcing its reliability in different evaluation scenarios. 

 
Table 25 
Comparison of ranking outcomes for 𝑞 =  5 and 𝑞 =  100. 

Alternatives 
Case 5 
𝑞 = 5 

Case 14 
𝑞 = 14 

Case 45 
𝑞 = 45 

Case 68 
𝑞 = 68 

Case 100 
𝑞 = 100 

A1 2 2 2 2 2 
A2 3 3 3 3 3 
A3 1 1 1 1 1 

 
The sensitivity analysis presented in Figure 4 visually supports the stability of the EDAS results 

despite variations in the q parameter. It has been observed that the ranking of the alternatives 
remains constant (𝐴3 > 𝐴1 > 𝐴2) throughout the entire range of 𝑞 values, and the top-performing 
alternative does not change in any of the tested scenarios. This confirms the high applicability of the 
model to decision-making problems under conditions of uncertainty and imprecision. The findings 
indicate that the integration of the q-ROFs approach with the EDAS method enables highly robust 
and consistent supplier evaluations, particularly in complex sectors such as the shipbuilding industry. 
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Fig. 4. Sensitivity analysis graph 

 
6. Discussion and Conclusion 

The shipbuilding industry, which is the focus of this study, is recognized as one of the strategic 
sectors significantly affected by global developments. Over time, the wear and aging of both military 
and commercial vessels require regular maintenance and repair, ensuring that this sector remains 
continuously active. Additionally, following the COVID-19 pandemic, maritime transportation 
continues to be one of the most efficient modes of transport worldwide. It is undeniable that 
strengthening naval forces plays a critical role in enhancing national deterrence on the international 
stage. In this context, shipyards and shipbuilding companies continue their operations 
uninterruptedly to reinforce both national defense capabilities and commercial maritime logistics. 

In light of these factors, supply chain management holds great importance in procuring the goods 
and services needed during shipbuilding and repair processes. Optimal supplier selection, accurate 
identification of needs through well-defined criteria, and procurement from appropriate sources 
directly affect operational efficiency. Conversely, selecting the wrong supplier or materials can lead 
to excessive time loss and significant financial resource depletion. For these reasons, effective 
management of the supply chain and careful evaluation of suppliers are vital to prevent such adverse 
outcomes. 

In this study, supplier firms operating in Türkiye’s shipbuilding and repair industry were evaluated 
based on 12 criteria derived from a comprehensive literature review. The decision-maker experts 
involved in the evaluation were selected from professionals working in procurement and supply 
departments who had experience with the chosen suppliers. Based on expert opinions, alternatives 
were analyzed using a decision-making framework that incorporates FF-SWARA for criteria weighting 
and a q-ROFs-based EDAS method for ranking alternatives. 
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The results demonstrated a high degree of stability and consistency across all tested scenarios. 
Notably, the ranking of alternatives (𝐴3 > 𝐴1 > 𝐴2) remained unchanged across all values of the q 
parameter (ranging between 𝑞 = 1 and 𝑞 = 100), indicating that the proposed model exhibits strong 
robustness even under varying levels of uncertainty. This outcome can be considered a significant 
advantage, especially in a strategic sector such as shipbuilding where decision-making processes are 
critically important amid prevalent uncertainty. 

Furthermore, the integration of q-ROFs enables decision-makers to capture and assess hesitation 
and uncertainty more effectively compared to traditional fuzzy approaches. The findings confirm that 
this approach not only provides reliable evaluations but also supports informed and resilient 
decision-making processes in complex supply environments. 

The proposed model offers important benefits to procurement and purchasing department 
personnel aiming to minimize operational risks and optimize resource utilization. The use of expert 
opinions and real data increases the model’s applicability and relevance to the sector. 

For future research, the FF-SWARA and q-ROFs-based EDAS methods proposed in this study can 
be adapted and applied to various multi-criteria and uncertainty-involved decision-making problems. 
Additionally, integrating fuzzy trigonometric operators into the q-ROFs framework may provide 
further advantages in handling uncertainty and contribute meaningfully to the literature. Conducting 
comparative studies in different industries such as defense, aerospace, or energy would also be 
beneficial for evaluating the generalizability and flexibility of the proposed approach. 
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