A Proposed Framework for Fuzzy and NeutrosophicExtensions of Service Integration and Management (SIAM)and ITIL-Based Models
DOI:
https://doi.org/10.31181/jidmgc11202510Keywords:
Fuzzy set, Neutrosophic set, IT Service Management, Service Integration and Management (SIAM), ITILAbstract
This paper surveys several uncertainty-handling paradigms—fuzzy sets, intuitionisticfuzzy sets, and neutrosophic sets—and demonstrates how they can enrichIT Service Management (ITSM). We then introduce two new frameworks—FuzzyService Integration and Management (FSIM) and Neutrosophic Service Integrationand Management (NSIM)—which embed these uncertainty models into ServiceIntegration and Management (SIAM). FSIM uses fuzzy membership functionsto capture imprecision in quality, cost, and coordination overhead, while NSIMextends this to neutrosophic triples that also quantify indeterminacy and contradiction.Finally, we explore how ITIL best practices can be fused with fuzzy andneutrosophic logic to create more adaptive, resilient service-management processes.
Downloads
References
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.
Zadeh, L. A. (2011). A note on z-numbers. Information Sciences, 181(14), 2923–2932. https://doi.org/10.1016/j.ins.2011.02.022
Atanassov, K., & Gargov, G. (1998). Elements of intuitionistic fuzzy logic. Part I. Fuzzy Sets and Systems, 95(1), 39–52. https://doi.org/10.1016/S0165-0114(96)00326-0
Atanassov, K. T., & Gargov, G. (2017). Intuitionistic fuzzy logics. Springer.
Cuong, B. C., & Kreinovich, V. (2013). Picture fuzzy sets—A new concept for computational intelligence problems. 2013 Third World Congress on Information and Communication Technologies (WICT 2013), 1–6. https://doi.org/10.1109/WICT.2013.7113099
Hatamleh, R., Al-Husban, A., Zubair, S. A. M., Elamin, M., Saeed, M. M., Abdolmaleki, E., Fujita, T., Nordo, G., & Khattak, A. M. (2025). AI-assisted wearable devices for promoting human health and strength using complex interval-valued picture fuzzy soft relations. European Journal of Pure and Applied Mathematics, 18(1), 5523–5523. https://doi.org/10.29020/nybg.ejpam.v18i1.5523
Das, S., Ghorai, G., & Xin, Q. (2022). Picture fuzzy threshold graphs with application in medicine replenishment. Entropy, 24(5), 658. https://doi.org/10.3390/e24050658
Torra, V., & Narukawa, Y. (2009). On hesitant fuzzy sets and decision. 2009 IEEE International Conference on Fuzzy Systems, 1378–1382. https://doi.org/10.1109/FUZZY.2009.5276884
Xu, Z. (2014). Hesitant fuzzy sets theory (Vol. 314). Springer.
Torra, V. (2010). Hesitant fuzzy sets. International Journal of Intelligent Systems, 25(6), 529–539. https://doi.org/10.1002/int.20418
Zhang, W.-R. (1994). Bipolar fuzzy sets and relations: A computational framework for cognitive modeling and multiagent decision analysis. *NAFIPS/IFIS/NASA '94. Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference. The Industrial Fuzzy Control and Intellige*, 305–309. https://doi.org/10.1109/IJCF.1994.375115
Zhang, W.-R. (1997). Bipolar fuzzy sets. https://api.semanticscholar.org/CorpusID:63639587
Zadeh, L. A. (1996). Fuzzy logic, neural networks, and soft computing. In Fuzzy sets, fuzzy logic, and fuzzy systems: Selected papers by Lotfi A Zadeh (pp. 775–782). World Scientific. https://doi.org/10.1145/175247.175255
Smarandache, F. (1999). A unifying field in logics: Neutrosophic logic. American Research Press.
Smarandache, F., & Jdid, M. (2023). On overview of neutrosophic and plithogenic theories and applications. https://fs.unm.edu/ScArt/AnOverviewNeutroPlithoTheories.pdf
Smarandache, F. (2016). Degrees of membership > 1 and < 0 of the elements with respect to a neutrosophic offset. Neutrosophic Sets and Systems, 12, 3–8.
Broumi, S., Talea, M., Bakali, A., & Smarandache, F. (2016). Single valued neutrosophic graphs. Journal of New Theory, (10), 86–101. https://doi.org/10.5281/zenodo.50940
Fujita, T., & Smarandache, F. (2025a). Reconsideration of neutrosophic social science and neutrosophic phenomenology with non-classical logic. Infinite Study.
Smarandache, F. (1998). Neutrosophy: Neutrosophic probability, set, and logic: Analytic synthesis & synthetic analysis.
Virri, O. (2017). Service integration and management (SIAM) practices and four case studies of Finnish companies.
Armes, D., Engelhart, N., McKenzie, P., & Wiggers, P. (2015). SIAM: Principles and practices for service integration and management. Van Haren.
Clifford, D. (2016). SIAM/MSI: An introduction to service integration and management/multi-sourcing integration for IT service management. IT Governance Ltd.
Miller–Cami08ac, C. (2016). Service integration and management.
Galup, S. D., Dattero, R., Quan, J. J., & Conger, S. (2009). An overview of IT service management. Communications of the ACM, 52(5), 124–127. https://doi.org/10.1145/1506409.1506439
Grönroos, C. (1990). Service management and marketing (Vol. 27). Lexington Books.
Iden, J., & Eikebrokk, T. R. (2013). Implementing IT service management: A systematic literature review. International Journal of Information Management, 33(3), 512–523. https://doi.org/10.1016/j.ijinfomgt.2013.01.004
Molnar, D., & Schechter, S. E. (2010). Self hosting vs. cloud hosting: Accounting for the security impact of hosting in the cloud. WEIS, 2010, 1–18.
Comellas, J. O. F., Presa, I. G., & Fernández, J. G. (2010). SLA-driven elastic cloud hosting provider. *2010 18th Euromicro Conference on Parallel, Distributed and Network-based Processing*, 111–118.
Amies, A. (2012). Developing and hosting applications on the cloud. IBM Press.
Heinonen, K. (2007). Conceptualising online banking service value. Journal of Financial Services Marketing, 12(1), 39–52. https://doi.org/10.1057/palgrave.fsm.4760056
Wu, D., & Dash Wu, D. (2010). Performance evaluation and risk analysis of online banking service. Kybernetes, 39(5), 723–734. https://doi.org/10.1108/03684921011043215
Kumar, V., & Reinartz, W. (2018). Customer relationship management. Springer.
Xu, Y., Yen, D. C., Lin, B., & Chou, D. C. (2002). Adopting customer relationship management technology. Industrial Management & Data Systems, 102(8), 442–452. https://doi.org/10.1108/02635570210445871
Winer, R. S. (2001). A framework for customer relationship management. California Management Review, 43(4), 89–105.
Young, K. (2009). Understanding online gaming addiction and treatment issues for adolescents. The American Journal of Family Therapy, 37(5), 355–372. https://doi.org/10.1080/01926180902942191
Ko, C.-H., Liu, G.-C., Hsiao, S., Yen, J.-Y., Yang, M.-J., Lin, W.-C., Yen, C.-F., & Chen, C.-S. (2009). Brain activities associated with gaming urge of online gaming addiction. Journal of Psychiatric Research, 43(7), 739–747. https://doi.org/10.1016/j.jpsychires.2008.09.01
Addy, R. (2007). Effective IT service management: To ITIL and beyond! (Vol. 29). Springer.
Potgieter, B., Botha, J., & Lew, C. (2005). Evidence that use of the ITIL framework is effective. 18th Annual Conference of the National Advisory Committee on Computing Qualifications, Tauranga, NZ.
Yandri, R., Utama, D. N., Zahra, A., et al. (2019). Evaluation model for the implementation of information technology service management using fuzzy ITIL. Procedia Computer Science, 157, 290–297. https://doi.org/10.1016/j.procs.2019.08.169
Zarrazvand, H., & Shojafar, M. (2012). The use of fuzzy cognitive maps in analyzing and implementation of ITIL processes. arXiv preprint arXiv:1206.2297.
Ranggadara, I. (2019). Fuzzy Tsukamoto and ITIL for improvement strategy on incident ticket services. International Journal of Innovative Technology and Exploring Engineering, 8(10), 897–903. https://doi.org/10.35940/ijitee.J9063.0881019
Smarandache, F. (2018). Plithogeny, plithogenic set, logic, probability, and statistics. arXiv preprint arXiv:1808.03948.
Fujita, T. (2025a). Claw-free graph and AT-free graph in fuzzy, neutrosophic, and plithogenic graphs. Information Sciences with Applications, 5, 40–55. https://doi.org/10.61356/j.iswa.2025.5502
Sultana, F., Gulistan, M., Ali, M., Yaqoob, N., Khan, M., Rashid, T., & Ahmed, T. (2023). A study of plithogenic graphs: Applications in spreading coronavirus disease (COVID-19) globally. Journal of Ambient Intelligence and Humanized Computing, 14(10), 13139–13159. https://doi.org/10.1007/s12652-022-03772-6
Myvizhi, M., Elkholy, M., Abdelhafeez, A., Elbehiery, H., et al. (2025). Enhanced MADM strategy with heptapartitioned neutrosophic distance metrics. Neutrosophic Sets and Systems, 78, 74–96. https://doi.org/10.5281/zenodo.14231102
Broumi, S., & Witczak, T. (2022). Heptapartitioned neutrosophic soft set. International Journal of Neutrosophic Science, 18(4), 270–290. https://doi.org/10.54216/IJNS.180423
Smarandache, F. (2017). Hyperuncertain, superuncertain, and superhyperuncertain sets/logics/probabilities/statistics. Infinite Study.
Fujita, T. (2025b). Advancing uncertain combinatorics through graphization, hyperization, and uncertainization: Fuzzy, neutrosophic, soft, rough, and beyond. Biblio Publishing.
Fujita, T., & Smarandache, F. (2025b). Some types of hyperneutrosophic set (3): Dynamic, quadripartitioned, pentapartitioned, heptapartitioned, m-polar. Advancing Uncertain Combinatorics through Graphization, Hyperization, and Uncertainization: Fuzzy, Neutrosophic, Soft, Rough, and Beyond, 4, 178.
Hussain, S., Hussain, J., Rosyida, I., & Broumi, S. (2022). Quadripartitioned neutrosophic soft graphs. In Handbook of research on advances and applications of fuzzy sets and logic (pp. 771–795). IGI Global.
Radha, R., Mary, A. S. A., & Smarandache, F. (2021). Quadripartitioned neutrosophic Pythagorean soft set. International Journal of Neutrosophic Science (IJNS) Volume 14, 2021, 11. https://doi.org/10.54216/IJNS.140101
Gross, J. L., Yellen, J., & Anderson, M. (2018). Graph theory and its applications. Chapman and Hall/CRC.
Mačajová, E., & Steffen, E. (2015). The difference between the circular and the integer flow number of bidirected graphs. Discrete Mathematics, 338(6), 866–867. https://doi.org/10.1016/j.disc.2015.01.009
Bouchet, A. (1983). Nowhere-zero integral flows on a bidirected graph. Journal of Combinatorial Theory, Series B, 34(3), 279–292. https://doi.org/10.1016/0095-8956(83)90041-2
Ghareghani, N. (2017). A new proof of validity of Bouchet’s conjecture on Eulerian bidirected graphs. Transactions on Combinatorics, 6(2), 31–35. https://doi.org/10.22108/toc.2017.21362
Xu, R., & Zhang, C.-Q. (2005). On flows in bidirected graphs. Discrete Mathematics, 299(1-3), 335–343. https://doi.org/10.1016/j.disc.2004.06.023
Berge, C. (1984). Hypergraphs: Combinatorics of finite sets (Vol. 45). Elsevier.
Bretto, A. (2013). Hypergraph theory. An introduction. Mathematical Engineering. Springer.
Akram, M., Gani, A. N., & Saeid, A. B. (2014). Vague hypergraphs. Journal of Intelligent & Fuzzy Systems, 26(2), 647–653. https://doi.org/10.3233/IFS-120756
Fujita, T. (2026). Review of probabilistic hypergraph and probabilistic superhypergraph. Spectrum of Operational Research, 319–338. https://doi.org/10.31181/sor31202651
Smarandache, F. (2022). Introduction to the n-superhypergraph—The most general form of graph today. Infinite Study. https://doi.org/10.5281/zenodo.3783103
Fujita, T. (2025c). Hypergraph containers and their generalization to super-hyper-graph containers. Abhath Journal of Basic and Applied Sciences, 4(1), 94–107. https://doi.org/10.59846/ajbas.v4i1.831
Fujita, T., & Smarandache, F. (2024). A concise study of some superhypergraph classes. Neutrosophic Sets and Systems, 77, 548–593. https://fs.unm.edu/nss8/index.php/111/article/view/5416
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Takaaki Fujita (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.