A Fuzzy Decision Support System for the Effect Evaluation of GAI Application in HRM
DOI:
https://doi.org/10.31181/jidmgc11202524Keywords:
Generative artificial intelligence, Human resource management, Picture fuzzy set, CIMAS, VIKORAbstract
To alleviate the difficulties faced by enterprises in choosing which human resource management module to prioritize for the application of generative artificial intelligence, this study attempts to construct a hybrid framework. First, the relevant literature was sorted, and eight evaluation criteria were proposed, including quality, technology, and compatibility. Then, the expert language judgment is transformed into a picture fuzzy set. The CIMAS method was used to determine the weights and test consistency. Subsequently, VIKOR is introduced to balance group utility and individual regret, and the priority sequence is generated. This framework transforms the selection process from experience-driven to quantifiable and repeatable multi-attribute decision-making. Simultaneously, it provides suggestions for the introduction of generative artificial intelligence into the enterprise human resource management module.
Downloads
References
Liu, Y., Abdul Rahman, A., Amin, S. I. M., & Ja’afar, R. (2023). How does digital finance affect sustainable economic growth? Evidence from China. Environmental Science and Pollution Research, 30(46), 103164-103178. https://doi.org/10.1007/s11356-023-29496-4
Iansiti, M., & Lakhani, K. R. (2020). Competing in the age of AI: Strategy and leadership when algorithms and networks run the world. Harvard Business Press. https://doi.org/10.1080/09700161.2021.1918951
Grønsund, T., & Aanestad, M. (2020). Augmenting the algorithm: Emerging human-in-the-loop work configurations. The Journal of Strategic Information Systems, 29(2), 101614. https://doi.org/10.1016/j.jsis.2020.101614
Prasad, K. D. V., & De, T. (2024). Generative AI as a catalyst for HRM practices: mediating effects of trust. Humanities and Social Sciences Communications, 11(1), 1-16. https://doi.org/10.1057/s41599-024-03842-4
Chilunjika, A., Intauno, K., & Chilunjika, S. R. (2022). Artificial intelligence and public sector human resource management in South Africa: Opportunities, challenges and prospects. SA Journal of Human Resource Management, 20, 1972. https://doi.org/10.4102/sajhrm.v20i0.1972
Malik, N., Tripathi, S. N., Kar, A. K., & Gupta, S. (2021). Impact of artificial intelligence on employees working in industry 4.0 led organizations. International Journal of Manpower, 43(2), 334-354. https://doi.org/10.1108/IJM-03-2021-0173
Aspan, H. (2020). Individual characteristics and job characteristics on work effectiveness in the state-owned company: the moderating effect of emotional intelligence. International Journal of Innovation, Creativity and Change, 13(6), 761-774.
Singh, A., & Shaurya, A. (2021). Impact of Artificial Intelligence on HR practices in the UAE. Humanities and Social Sciences Communications, 8(1), 1-9. https://doi.org/10.1057/s41599-021-00995-4
Michel-Villarreal, R., Vilalta-Perdomo, E., Salinas-Navarro, D. E., Thierry-Aguilera, R., & Gerardou, F. S. (2023). Challenges and opportunities of generative AI for higher education as explained by ChatGPT. Education Sciences, 13(9), 856. https://doi.org/10.3390/educsci13090856
Taulli, T. (2023). Generative AI: How ChatGPT and other AI tools will revolutionize business. Apress. https://doi.org/10.1007/978-1-4842-9367-6
Patel, N. S., & Lim, J. T. H. (2025). Critical design futures thinking and GenerativeAI: a Foresight 3.0 approach in higher education to design preferred futures for the industry. foresight, 27(2), 380-402. https://doi.org/10.1108/fs-11-2023-0228
Parasuraman, A. (2000). Technology Readiness Index (TRI) a multiple-item scale to measure readiness to embrace new technologies. Journal of Service Research, 2(4), 307-320. https://doi.org/10.1177/109467050024001
Bonomi Savignon, A., Zecchinelli, R., Costumato, L., & Scalabrini, F. (2024). Automation in public sector jobs and services: a framework to analyze public digital transformation’s impact in a data-constrained environment. Transforming Government: People, Process and Policy, 18(1), 49-70. https://doi.org/10.1108/TG-04-2023-0044
Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang, H., ... & Liu, T. (2025). A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. ACM Transactions on Information Systems, 43(2), 1-55. https://doi.org/10.1145/3703155
Andrieux, P., Johnson, R. D., Sarabadani, J., & Van Slyke, C. (2024). Ethical considerations of generative AI-enabled human resource management. Organizational Dynamics, 53(1), 101032. https://doi.org/10.1016/j.orgdyn.2024.101032
Abdelhay, S., AlTalay, M. S. R., Selim, N., Altamimi, A. A., Hassan, D., Elbannany, M., & Marie, A. (2025). The impact of generative AI(ChatGPT)on recruitment efficiency and candidate quality: the mediating role of process automation level and the moderating role of organizational size. Frontiers in Human Dynamics, 6, 1487671. https://doi.org/10.3389/fhumd.2024.1487671
Kim, S., Khoreva, V., & Vaiman, V. (2025). Strategic human resource management in the era of algorithmic technologies: key insights and future research agenda. Human Resource Management, 64(2), 447-464. https://doi.org/10.1002/hrm.22268
Brown, O., Davison, R. M., Decker, S., Ellis, D. A., Faulconbridge, J., Gore, J., ... & Hibbert, P. (2024). Theory-driven perspectives on generative artificial intelligence in business and management. British Journal of Management, 35(1), 3-23. https://doi.org/10.1111/1467-8551.12788
Cuong, B. C., & Kreinovich, V. (2013). Picture fuzzy sets-a new concept for computational intelligence problems. Journal of Computational Science and Cybernetics, 30(4), 409-409. https://doi.org/10.15625/1813-9663/30/4/5032
Le, H. P., & Son, N. T. (2021). Some operations on picture fuzzy sets and their applications. Journal of Intelligent & Fuzzy Systems, 41(3), 3307-3317. https://doi.org/10.3233/JIFS-201056
Bošković, S., et al. (2023). A New Criteria Importance Assessment (CIMAS)Method In Multi-Criteria Group Decision-Making. Facta Universitatis, Series: Mechanical Engineering. https://doi.org/10.22190/FUME230730050B
Opricovic, S. (1998). Multicriteria optimization of civil engineering systems. Faculty of Civil Engineering, Belgrade, 2(1), 5-21.
Opricović, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445-455. https://doi.org/10.1016/S0377-2217(03)00020-7
Carlsson, C. (1982). Tackling an MCDM-problem with the help of some results from fuzzy set theory. European Journal of Operational Research, 10(3), 270-281. https://doi.org/10.1016/0377-2217(82)90226-0
Dursun, M., & Karsak, E. E. (2010). A fuzzy MCDM approach for personnel selection. Expert Systems with Applications, 37(6), 4324-4330. https://doi.org/10.1016/j.eswa.2009.11.067
Park, H. E. (2024). The double‐edged sword of generative artificial intelligence in digitalization: An affordances and constraints perspective. Psychology & Marketing, 41(11), 2924-2941. https://doi.org/10.1002/mar.22094
Malik, A., Budhwar, P., Mohan, H., & NR, S. (2023). Employee experience–the missing link for engaging employees: Insights from an MNE's AI‐based HR ecosystem. Human Resource Management, 62(1), 97-115. https://doi.org/10.1002/hrm.22133
Ali, H., & Aysan, A. F. (2025). Ethical dimensions of generative AI: a cross-domain analysis using machine learning structural topic modeling. International Journal of Ethics and Systems, 41(1), 3-34. https://doi.org/10.1108/IJOES-04-2024-0112
Surianarayanan, C., Lawrence, J. J., Chelliah, P. R., Prakash, E., & Hewage, C. (2023). A survey on optimization techniques for edge artificial intelligence (AI). Sensors, 23(3), 1279. https://doi.org/10.3390/s23031279
Bansal, A., Padappayil, R. P., Garg, C., Singal, A., Gupta, M., & Klein, A. (2020). Utility of artificial intelligence amidst the COVID 19 pandemic: a review. Journal of Medical Systems, 44(9), 156. https://doi.org/10.1007/s10916-020-01617-3
Xu, S., Kee, K. F., Li, W., Yamamoto, M., & Riggs, R. E. (2024). Examining the diffusion of innovations from a dynamic, differential-effects perspective: A longitudinal study on AI adoption among employees. Communication Research, 51(7), 843-866. https://doi.org/10.1177/00936502231191832
Liang, Y., Qi, G., Wei, K., & Chen, J. (2017). Exploring the determinant and influence mechanism of e-Government cloud adoption in government agencies in China. Government Information Quarterly, 34(3), 481-495. https://doi.org/10.1016/j.giq.2017.06.002
Zhou, Z., Liu, D., Chen, Z., & Pancho, M. (2025). Government adoption of generative artificial intelligence and ambidextrous innovation. International Review of Economics & Finance, 98(C). https://doi.org/10.1016/j.iref.2025.103953
Zazon, D., Fink, L., Gordon, S., & Nissim, N. (2023). Can NeuroIS improve executive employee recruitment? Classifying levels of executive functions using resting state EEG and data science methods. Decision Support Systems, 168, 113930. https://doi.org/10.1016/j.dss.2023.113930
wael AL-khatib, A. (2023). Drivers of generative artificial intelligence to fostering exploitative and exploratory innovation: A TOE framework. Technology in Society, 75, 102403. https://doi.org/10.1016/j.techsoc.2023.102403
Holm, A. B. (2012). E-recruitment: Towards an ubiquitous recruitment process and candidate relationship management. German Journal of Human Resource Management, 26(3), 241-259. https://doi.org/10.1177/239700221202600303
Lokuge, S., Sedera, D., Grover, V., & Dongming, X. (2019). Organizational readiness for digital innovation: Development and empirical calibration of a construct. Information & Management, 56(3), 445-461. https://doi.org/10.1016/j.im.2018.09.001
Lutfi, A., Alrawad, M., Alsyouf, A., Almaiah, M. A., Al-Khasawneh, A., Al-Khasawneh, A. L., ... & Ibrahim, N. (2023). Drivers and impact of big data analytic adoption in the retail industry: A quantitative investigation applying structural equation modeling. Journal of Retailing and Consumer Services, 70, 103129. https://doi.org/10.1016/j.jretconser.2022.103129
Jöhnk, J., Weißert, M., & Wyrtki, K. (2021). Ready or not, AI comes—An interview study of organizational AI readiness factors. Business & Information Systems Engineering, 63(1), 5–20. https://doi.org/10.1007/s12599-020-00676-7
Weiner, B. J. (2020). A theory of organizational readiness for change. In Handbook on implementation science (pp. 215-232). Edward Elgar Publishing. https://doi.org/10.1186/1748-5908-4-67
Bankins, S., Ocampo, A. C., Marrone, M., Restubog, S. L. D., & Woo, S. E. (2024). A multilevel review of artificial intelligence in organizations: Implications for organizational behavior research and practice. Journal of Organizational Behavior, 45(2), 159-182. https://doi.org/10.1002/job.2735
Marchena Sekli, G., & Portuguez-Castro, M. (2025). Fostering entrepreneurial success from the classroom: Unleashing the potential of generative AI through technology-to-performance chain. A multi-case study approach. Education and Information Technologies, 1-29. https://doi.org/10.1007/s10639-025-13316-y
Jarrahi, M. H., Lutz, C., Boyd, K., Oesterlund, C., & Willis, M. (2023). Artificial intelligence in the work context. Journal of the Association for Information Science and Technology, 74(3), 303-310. https://doi.org/10.1002/asi.24730
Wang, Q., Ji, X., & Zhao, N. (2024). Embracing the power of AI in retail platform operations: Considering the showrooming effect and consumer returns. Transportation Research Part E: Logistics and Transportation Review, 182, 103409. https://doi.org/10.1016/j.tre.2023.103409
Yang, L., He, J., & Shi, W. (2025). Application of artificial intelligence: Equilibrium analysis of e-commerce platform supply chain sales formats. Electronic Commerce Research, 1-31. https://doi.org/10.1007/s10660-025-10016-0
Cuong, B. C., & Kreinovich, V. (2013). Picture fuzzy sets-a new concept for computational intelligence problems. In 2013 Third World Congress on Information and Communication Technologies (WICT 2013) (pp. 1-6). IEEE. https://doi.org/10.1109/WICT.2013.7113099
Wei, G. (2017). Some cosine similarity measures for picture fuzzy sets and their applications to strategic decision making. Informatica, 28(3), 547-564. https://doi.org/10.15388/Informatica.2017.144
Ambrin, R., Ibrar, M., De La Sen, M., Rabbi, I., & Khan, A. (2021). Extended TOPSIS method for supplier selection under picture hesitant fuzzy environment using linguistic variables. Journal of Mathematics, 2021(1), 6652586. https://doi.org/10.1155/2021/665258
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jie Xv (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.












All site content, except where otherwise noted, is licensed under the