Order Allocation Model and Supplier Evaluation in Textile Industry with Fuzzy OPA and RAFSI Methods

Authors

DOI:

https://doi.org/10.31181/jidmgc11202527

Keywords:

Multiple Criteria, Supplier Evaluation, Pareto, Fuzzy sets, OPA, RAFSI, Order Allocation

Abstract

Increasing competition, accelerating production processes, and dynamic market conditions are forcing companies to make strategic decisions. Effective management of contract supply production processes is essential in the textile sector to promptly meet customer demands while ensuring high quality and affordability. In this context, choosing the best subcontractor is crucial for a company seeking a competitive advantage. Factors such as supplier capacity, quality of workmanship, timely delivery, and cost efficiency have a direct impact on the performance of textile companies. During the supplier evaluation process, factors such as sustainability criteria, efficiency, speed, and quality should be taken into account. This study proposes a decision-support methodology for evaluating subcontractors in textile companies that outsource manufacturing. The methodology incorporates a two-tiered Pareto analysis to identify focus product groups, fuzzy multi-criteria decision-making techniques for subcontractor assessment, and mathematical modelling approaches for capacity allocation. A real case study is presented to identify the most profitable product groups via Pareto analysis, to evaluate subcontractors through the Fuzzy-based Ordinal Priority Approach (OPA) and the Ranking of Alternatives by Functional Mapping of Criteria Sub-Intervals to Single Intervals (RAFSI) method, and a mixed-integer programming model for scheduling orders to subcontractors’ production plans. The proposed approach enhances the effectiveness of the supplier selection process and offers a practical framework for strategic decision-making in contract manufacturing in similar industrial settings.

Downloads

Download data is not yet available.

References

Esi, B. (2017). Turkish Textile Industry and Its Development. Journal of Awareness, 2(3S), 643-664.

Öztürk, S. S., & Koçak, A. (2025). Tekstil Sektöründe Fasoncu Seçiminde Çok Kriterli Bir Karar Verme Model Önerisi. Tekstil ve Mühendis, 32(137), 56-78. https://doi.org/10.7216/teksmuh.1587586

Nebati, E. E. (2024). Kumaş Tedariğinde Tedarikçi Seçimi: Tekstil Sektöründe Bir Uygulama. Sosyal Bilimlerde Nicel Araştırmalar Dergisi, 4(1), 19-37. https://sobinarder.com/index.php/sbd/article/view/74

Islam, S., Amin, S. H., & Wardley, L. J. (2022). Supplier selection and order allocation planning using predictive analytics and multi-objective programming. Computers & Industrial Engineering, 174, 108825. https://doi.org/10.1016/j.cie.2022.108825

Nguyen, T., Amin, S. H., & Shah, B. (2024). A Perspective on Supplier Selection and Order Allocation: Literature Review. Administrative Sciences, 14(9), 206. https://doi.org/10.3390/admsci14090206

Wang, C. N., Viet, V. T. H., Ho, T. P., Nguyen, V. T., & Nguyen, V. T. (2020). Multi-criteria decision model for the selection of suppliers in the textile industry. Symmetry, 12(6), 979. https://doi.org/10.3390/sym12060979

Nazam, M., Xu, J., Tao, Z., Ahmad, J., & Hashim, M. (2015). A fuzzy AHP-TOPSIS framework for the risk assessment of green supply chain implementation in the textile industry. International Journal of Supply and Operations Management, 2(1), 548. https://dx.doi.org/10.22034/2015.1.02

Guo, Z., Liu, H., Zhang, D., & Yang, J. (2017). Green supplier evaluation and selection in apparel manufacturing using a fuzzy multi-criteria decision-making approach. Sustainability, 9(4), 650. https://doi.org/10.3390/su9040650

Gören, H. G., & Şenocak, A. A. (2018). Macbeth Based Taguchi Loss Functions Approach for Green Supplier Selection: A Case Study in Textile Industry. Textile and Apparel, 28(2), 90-97. https://dergipark.org.tr/en/download/article-file/498481

Gündüz, Ç., & Gündüz, G. Ş. (2019). Supplier selection under fuzzy environment. Textile and Apparel, 29(4), 344-352. https://doi.org/10.32710/tekstilvekonfeksiyon.551911

Wang, C. N., & Cheng, H. C. (2019). A fuzzy multicriteria decision-making (MCDM) model for sustainable supplier evaluation and selection based on triple bottom line approaches in the garment industry. Processes, 7(7), 400. https://doi.org/10.3390/pr7070400

Guarnieri, P., & Trojan, F. (2019). Decision making on supplier selection based on social, ethical, and environmental criteria: A study in the textile industry. Resources, Conservation and Recycling, 141, 347-361. https://doi.org/10.1016/j.resconrec.2018.10.023

Tayyab, M., & Sarkar, B. (2021). An interactive fuzzy programming approach for a sustainable supplier selection under textile supply chain management. Computers & Industrial Engineering, 155, 107164. https://doi.org/10.1016/j.cie.2021.107164

Karamaşa, Ç., Korucuk, S., & Ergün, M. (2021). Determining the green supplier selection criteria in textile enterprises and selecting the most ideal distribution model: A case study of Giresun. Alphanumeric Journal, 9(2), 311-324. https://doi.org/10.17093/alphanumeric.1052033

Rahman, M. M., Bari, A. M., Ali, S. M., & Taghipour, A. (2022). Sustainable supplier selection in the textile dyeing industry: An integrated multi-criteria decision analytics approach. Resources, Conservation & Recycling Advances, 15, 200117. https://doi.org/10.1016/j.rcradv.2022.200117

Ulutaş, A., Topal, A., Pamučar, D., Stević, Ž., Karabašević, D., & Popović, G. (2022). A new integrated multi-criteria decision-making model for sustainable supplier selection based on a novel grey WISP and grey BWM methods. Sustainability, 14(24), 16921. https://doi.org/10.3390/su142416921

Dinh, T. H., Nguyen, T. T. T., Do, T. T. T., Nguyen, T. V. T., Nguyen, H. L., & Do, V. T. (2024). Selection supplier for Textile and Garment enterprises in Vietnam using association rules. The Asian Journal of Shipping and Logistics, 40(4), 206-212. https://doi.org/10.1016/j.ajsl.2024.11.003

Lin, C. W. R., Lai, Y. S., Jeng, S. Y., Nguyen, T. T. V., & Lim, M. K. (2025). Supply chain disruption indicators: Vulnerability and resilience in the garment industry in Vietnam. Cleaner and Responsible Consumption, 16, 100251. https://doi.org/10.1016/j.clrc.2025.100251

Sheikh, M. H., Iqbal, M. A., & Urmi, S. S. (2025). Selecting the Best Yarn Supplier for a Bangladeshi Retail Apparel Industry Using Fuzzy Analytic Hierarchy Process: A Case Study. In International Textile and Apparel Association Annual Conference Proceedings (Vol. 81, No. 1). Iowa State University Digital Press. https://doi.org/10.31274/itaa.18629

Hardy, M. (2010). Pareto’s law. The Mathematical Intelligencer, 32(3), 38-43. https://doi.org/10.1007/s00283-010-9159-2

Naoum, V., Kyriopoulos, D., Charonis, A., Athanasakis, K., & Kyriopoulos, J. (2016). The Pareto principle ("80−20Rule") in healthcare services in Greece. Value in Health, 19(7), A618. https://doi.org/10.1016/j.jval.2016.09.1563

Deveci, M., Çiftçi, M. E., Isik, M., Pamucar, D., Wen, X., Chin, T., & Kadry, S. (2024). Aircraft type selection using fuzzy trigonometric based OPA and RAFSI model. Information Sciences, 673, 120688. https://doi.org/10.1016/j.ins.2024.120688

Ataei, Y., Mahmoudi, A., Feylizadeh, M. R., & Li, D. F. (2020). Ordinal priority approach (OPA) in multiple attribute decision-making. Applied Soft Computing, 86, 105893. https://doi.org/10.1016/j.asoc.2019.105893

Deveci, M., Pamucar, D., Gokasar, I., Köppen, M., & Gupta, B. B. (2022). Personal mobility in metaverse with autonomous vehicles using Q-rung orthopair fuzzy sets based OPA-RAFSI model. IEEE Transactions on Intelligent Transportation Systems, 24(12), 15642-15651. https://doi.org/10.1109/TITS.2022.3186294

Mahmoudi, A., Javed, S. A., & Mardani, A. (2022). Gresilient supplier selection through fuzzy ordinal priority approach: decision-making in post-COVID era. Operations Management Research, 15(1), 208-232. https://doi.org/10.1007/s12063-021-00178-z

Du, J. L., Liu, S. F., Javed, S. A., Goh, M., & Chen, Z. S. (2023). Enhancing quality function deployment through the integration of rough set and ordinal priority approach: A case study in electric vehicle manufacturing. IEEE Transactions on Engineering Management, 71, 7541-7552. https://doi.org/10.1109/TEM.2023.3282228

Majumder, P., & Salomon, V. A. P. (2024). Intuitionistic fuzzy ordinal priority approach with grey relational analysis. Mathematics, 12(19), 3156. https://doi.org/10.3390/math12193156

Cheraghi, S. H., Dadashzadeh, M., & Subramanian, M. (2004). Critical success factors for supplier selection: an update. Journal of Applied Business Research, 20(2), 91-108.

T.C. Sanayi ve Teknoloji Bakanlığı. (2022). Investment Incentives Program. https://sanayi.gov.tr/assets/pdf/destek-tesvikler/InvestmentIncentivesProgram.pdf

Bedirhandoğlu, Ş. B., & Atlas, M. (2023). Nötrosofik Bulanık Çok Amaçlı Optimizasyon Tekniği ve Tekstil Üretim Planında Uygulaması. Anadolu Üniversitesi Sosyal Bilimler Dergisi, 23(4), 1363-1392. https://doi.org/10.18037/ausbd.1253168

Fujita, T., Das, A. K., Mondal, S. P., Mehmood, A., Das, S., Duran, V., & Ghaib, A. A. (2025). Three-Mode Upside-Down Logic within Plithogenic Double-valued and Triple-valued Neutrosophic Sets. Journal of Contemporary Decision Science, 1(1), 19-45. https://doi.org/10.65069/smart1120255

Mitrović, D., Demir, G., Badi, I., & Bouraima, M. B. (2025). Balancing Efficiency and Risk in Public Sector Artificial Intelligence with Data Envelopment Analysis and Portfolio Approaches. Applied Decision Analytics , 1(1), 15-35.

Published

2025-12-28

How to Cite

Sezen, S., & Özkır, V. (2025). Order Allocation Model and Supplier Evaluation in Textile Industry with Fuzzy OPA and RAFSI Methods. Journal of Intelligent Decision Making and Granular Computing, 1(1), 325-344. https://doi.org/10.31181/jidmgc11202527