Multi-Perspective Strategic Analysis of Wind Energy Projects via AI-Integrated Quantum Fuzzy Recommender Approach
DOI:
https://doi.org/10.31181/jidmgc1120253Keywords:
Wind energy, Artificial intelligence, Fuzzy decision-making, Balanced scorecardAbstract
This manuscript aims to examine the most important critical indicators of feasibility analysis for wind energy projects. Within this context, experts are weighted using an artificial intelligence (AI) methodology. Secondly, missing evaluations are estimated via an expert recommender system. Thirdly, the balanced scorecard-based feasibility criteria are weighted with the help of Quantum Picture Fuzzy Rough Sets (QPFR)-based M-SWARA. Finally, selected project feasibility items for wind energy firms are ranked using QPFR-VIKOR. The main contribution of this study is the use of an artificial intelligence technique in the proposed model to compute the weights of the experts. This approach provides an opportunity to achieve more effective results. Customer expectation is identified as the most essential criterion in the balanced scorecard-based feasibility analysis. Environmental assessment of long-term effects is the most critical project feasibility item for wind energy firms. Cost-benefit analysis, considering economic, sectoral, and project-based conditions, also plays a critical role in this respect.
Downloads
References
Boadu, S., & Otoo, E. (2024). A comprehensive review on wind energy in Africa: Challenges, benefits and recommendations. Renewable and Sustainable Energy Reviews, 191, 114035. https://doi.org/10.1016/j.rser.2023.114035
Gorayeb, A., Brannstrom, C., Xavier, T., de Oliveira Soares, M., Teixeira, C. E. P., dos Santos, A. M. F., & de Carvalho, R. G. (2024). Emerging challenges of offshore wind energy in the Global South: Perspectives from Brazil. Energy Research & Social Science, 113, 103542. https://doi.org/10.1016/j.erss.2024.103542
Martinez, A., & Iglesias, G. (2024). Global wind energy resources decline under climate change. Energy, 288, 129765. https://doi.org/10.1016/j.energy.2023.129765
Elkadeem, M. R., Kotb, K. M., Abido, M. A., Hasanien, H. M., Atiya, E. G., Almakhles, D., & Elmorshedy, M. F. (2024). Techno-enviro-socio-economic design and finite set model predictive current control of a grid-connected large-scale hybrid solar/wind energy system: A case study of Sokhna Industrial Zone, Egypt. Energy, 289, 129816. https://doi.org/10.1016/j.energy.2023.129816
Bimenyimana, S., Wang, C., Asemota, G. N. O., Ihirwe, J. P., Tuyizere, M. N., Mwizerwa, F., ... & Abiyese, M. (2024). Geospatial analysis of wind energy siting suitability in the East African Community. Sustainability, 16(4), 1514. https://doi.org/10.3390/su16041514
Kusuma, Y. F., Fuadi, A. P., Al Hakim, B., Sasmito, C., Nugroho, A. C. P. T., Khoirudin, M. H., ... & Prabowo, A. R. (2024). Navigating challenges on the path to net zero emissions: A comprehensive review of wind turbine technology for implementation in Indonesia. Results in Engineering, 102008. https://doi.org/10.1016/j.rineng.2024.102008
Hansen, T. A., Wilson, E. J., Fitts, J. P., Jansen, M., Beiter, P., Steffen, B., ... & Kitzing, L. (2024). Five grand challenges of offshore wind financing in the United States. Energy Research & Social Science, 107, 103329. https://doi.org/10.1016/j.erss.2023.103329
Huang, C., Liu, C., Zhong, M., Sun, H., Gao, T., & Zhang, Y. (2024). Research on wind turbine location and wind energy resource evaluation methodology in port scenarios. Sustainability, 16(3), 1074. https://doi.org/10.3390/su16031074
Wang, K., Wu, D., Zhang, T., Yin, L., Wu, K., & Zheng, C. (2024). Spatial distribution and long-term trend of wind energy in the Northwest Pacific Ocean. Water-Energy Nexus. https://doi.org/10.1016/j.wen.2023.11.005
Al-Sumri, M. S., Shaik, F., Lakkimsetty, N. R., & Varghese, M. J. (2024). Techno-economic analysis of solar and wind energy systems for power and hydrogen production. In Advances in Clean Energy Systems and Technologies (pp. 207–213). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-49787-2_19
Sun, Y., Li, Y., Wang, R., & Ma, R. (2024). Modelling potential land suitability of large-scale wind energy development using explainable machine learning techniques: Applications for China, USA and EU. Energy Conversion and Management, 302, 118131. https://doi.org/10.1016/j.enconman.2024.118131
Brunner, E. J., Hoen, B., Rand, J., & Schwegman, D. (2024). Commercial wind turbines and residential home values: New evidence from the universe of land-based wind projects in the United States. Energy Policy, 185, 113837. https://doi.org/10.1016/j.enpol.2023.113837
Imam, A. A., Abusorrah, A., & Marzband, M. (2024). Potentials and opportunities of solar PV and wind energy sources in Saudi Arabia: Land suitability, techno-socio-economic feasibility, and future variability. Results in Engineering, 21, 101785. https://doi.org/10.1016/j.rineng.2024.101785
le Maitre, J., Ryan, G., & Power, B. (2024). Do concerns about wind farms blow over with time? Residents’ acceptance over phases of project development and proximity. Renewable and Sustainable Energy Reviews, 189, 113839. https://doi.org/10.1016/j.rser.2023.113839
Jurasz, J., Guezgouz, M., Campana, P. E., Kaźmierczak, B., Kuriqi, A., Bloomfield, H., ... & Elkadeem, M. R. (2024). Complementarity of wind and solar power in North Africa: Potential for alleviating energy droughts and impacts of the North Atlantic Oscillation. Renewable and Sustainable Energy Reviews, 191, 114181. https://doi.org/10.1016/j.rser.2023.114181
Nassar, Y. F., El-Khozondar, H. J., El-Osta, W., Mohammed, S., Elnaggar, M., Khaleel, M., ... & Alsharif, A. (2024). Carbon footprint and energy life cycle assessment of wind energy industry in Libya. Energy Conversion and Management, 300, 117846. https://doi.org/10.1016/j.enconman.2023.117846
Schmidt, H., Leschinger, V., Müller, F. J., de Vries, G., Renes, R. J., Schmehl, R., & Hübner, G. (2024). How do residents perceive energy-producing kites? Comparing the community acceptance of an airborne wind energy system and a wind farm in Germany. Energy Research & Social Science, 110, 103447. https://doi.org/10.1016/j.erss.2024.103447
le Maitre, J., Ryan, G., Power, B., & Sirr, G. (2024). Mechanisms to promote household investment in wind energy: A national experimental survey. Renewable Energy, 220, 119557. https://doi.org/10.1016/j.renene.2023.119557
Skjølsvold, T. M., Heidenreich, S., Henriksen, I. M., Oliveira, R. V., Dankel, D. J., Lahuerta, J., ... & Vasstrøm, M. (2024). Conditions for just offshore wind energy: Addressing the societal challenges of the North Sea wind industry. Energy Research & Social Science, 107, 103334. https://doi.org/10.1016/j.erss.2023.103334
Caporale, D., De Lucia, C., dell’Olio, L., & Pazienza, P. (2024). Policy insights for wind energy from a choice experiment stated preference efficient design in Apulia region (Italy). Economia Politica, 1–33. https://doi.org/10.1007/s40888-024-00325-2
Ye, F., Brodie, J., Miles, T., & Ezzat, A. A. (2024). AIRU-WRF: A physics-guided spatio-temporal wind forecasting model and its application to the US Mid Atlantic offshore wind energy areas. Renewable Energy, 223, 119934. https://doi.org/10.1016/j.renene.2023.119934
Acosta, O., Mandal, P., Galvan, E., & Senjyu, T. (2024). Performance assessment of offshore and onshore wind energy systems to counterpoise residential HVAC loads. International Journal of Electrical Power & Energy Systems, 157, 109830. https://doi.org/10.1016/j.ijepes.2024.109830
Gao, Q., Hayward, J. A., Sergiienko, N., Khan, S. S., Hemer, M., Ertugrul, N., & Ding, B. (2024). Detailed mapping of technical capacities and economics potential of offshore wind energy: A case study in South-eastern Australia. Renewable and Sustainable Energy Reviews, 189, 113872. https://doi.org/10.1016/j.rser.2023.113872
Schneider, N., & Rinscheid, A. (2024). The (de-) construction of technology legitimacy: Contending storylines surrounding wind energy in Austria and Switzerland. Technological Forecasting and Social Change, 198, 122929. https://doi.org/10.1016/j.techfore.2023.122929
Ramakrishnan, S., Delpisheh, M., Convery, C., Niblett, D., Vinothkannan, M., & Mamlouk, M. (2024). Offshore green hydrogen production from wind energy: Critical review and perspective. Renewable and Sustainable Energy Reviews, 195, 114320. https://doi.org/10.1016/j.rser.2024.114320
Nymphas, E. F., & Teliat, R. O. (2024). Evaluation of the performance of five distribution functions for estimating Weibull parameters for wind energy potential in Nigeria. Scientific African, 23, e02037. https://doi.org/10.1016/j.sciaf.2023.e02037
Zhao, X., Huang, G., Lu, C., Li, Y., & Ren, J. (2024). Ensemble Bayesian Model Averaging Projections of Wind‐Speed Extremes for Wind Energy Applications Over China Under Climate Change. Journal of Geophysical Research: Atmospheres, 129(1), e2023JD038806. https://doi.org/10.1029/2023JD038806
Borissova, D. (2024). Decision-making in planning and investing in wind energy. In Decision-Making in Design, Maintenance, Planning, and Investment of Wind Energy (pp. 31–96). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-52219-2_2
Chen, S., Xiao, Y., Zhang, C., Lu, X., He, K., & Hao, J. (2024). Cost dynamics of onshore wind energy in the context of China's carbon neutrality target. Environmental Science and Ecotechnology, 19, 100323. https://doi.org/10.1016/j.ese.2023.100323
Pryor, S. C., & Barthelmie, R. J. (2024). Power production, inter-and intra-array wake losses from the US East Coast offshore wind energy lease areas. Energies, 17(5), 1063. https://doi.org/10.3390/en17051063
Bonthu, S., Purvaja, R., Singh, K. S., Ganguly, D., Muruganandam, R., Paul, T., & Ramesh, R. (2024). Offshore wind energy potential along the Indian Coast considering ecological safeguards. Ocean & Coastal Management, 249, 107017. https://doi.org/10.1016/j.ocecoaman.2024.107017
Parush, D., & Shmueli, D. F. (2024). Integrating framing approaches as a tool for managing complex transitioning to renewable energy (TRE) projects: The Yatir Wind Farm case study. Sustainability, 16(8), 3164. https://doi.org/10.3390/su16083164
Kou, G., Dinçer, H., Yüksel, S., & Alotaibi, F. S. (2024). Imputed expert decision recommendation system for QFD-based omnichannel strategy selection for financial services. International Journal of Information Technology & Decision Making, 23(1), 141–170. https://doi.org/10.1142/S0219622023300033
Rahadian, D., Firli, A., Dinçer, H., Yüksel, S., Mikhaylov, A., & Ecer, F. (2024). A hybrid neuro fuzzy decision-making approach to the participants of derivatives market for fintech investors in emerging economies. Financial Innovation, 10(1), 37. https://doi.org/10.1186/s40854-023-00563-6
Dincer, H., Yüksel, S., Hacıoglu, U., & Erdebilli, B. (2024). Multidimensional analysis of investment priorities for circular economy with quantum spherical fuzzy hybrid modeling. International Journal of Information Technology & Decision Making, 1–27. https://doi.org/10.1142/S021962202350075X
Mahmudah, R. S., Putri, D. I., Abdullah, A. G., Shafii, M. A., Hakim, D. L., & Setiadipura, T. (2024). Developing a multi-criteria decision-making model for nuclear power plant location selection using Fuzzy Analytic Hierarchy Process and Fuzzy VIKOR methods focused on socio-economic factors. Cleaner Engineering and Technology, 100737. https://doi.org/10.1016/j.clet.2024.100737
Dugstad, A., Brouwer, R., Grimsrud, K., Kipperberg, G., Lindhjem, H., & Navrud, S. (2024). Nature is ours!–Psychological ownership and preferences for wind energy. Energy Economics, 129, 107239. https://doi.org/10.1016/j.eneco.2023.107239
Li, R., Jin, X., Yang, P., Feng, Y., Liu, Y., Wang, S., ... & Li, Y. (2024). Large-scale offshore wind energy integration by wind-thermal bundled power system: A case study of Yangxi, China. Journal of Cleaner Production, 435, 140601. https://doi.org/10.1016/j.jclepro.2024.140601
Christodoulou, T., Thomaidis, N. S., Kartsios, S., & Pytharoulis, I. (2024). Managing the intermittency of wind energy generation in Greece. Energies, 17(4), 866. https://doi.org/10.3390/en17040866
Rybak, A., Rybak, A., & Kolev, S. D. (2024). Development of wind energy and access to REE. The case of Poland. Resources Policy, 90, 104723. https://doi.org/10.1016/j.resourpol.2024.104723
Batablinlè, L., Bazyomo, S. D., Badou, F. D., Jean, H., Hodabalo, K., Zakari, D., ... & Lawin, A. E. (2024). Climate, water, hydropower, wind speed and wind energy potential resources assessments using weather time series data, downscaled regional circulation: A case study for Mono River Basin in the Gulf Guinea region. Renewable Energy, 120099. https://doi.org/10.1016/j.renene.2024.120099
Jalili, S., Maheri, A., Ivanovic, A., Neilson, R., Bentin, M., Kotzur, S., ... & Sünner, I. (2024). Economic and environmental assessments to support the decision-making process in the offshore wind farm decommissioning projects. Renewable and Sustainable Energy Reviews, 190, 114080. https://doi.org/10.1016/j.rser.2023.114080
Mohamed, E., Seresht, N. G., Jafari, P., & AbouRizk, S. (2024). Risk assessment for onshore wind projects in Canada. Renewable and Sustainable Energy Reviews, 191, 114145. https://doi.org/10.1016/j.rser.2023.114145
Shao, H., Henriques, R., Morais, H., & Tedeschi, E. (2024). Power quality monitoring in electric grid integrating offshore wind energy: A review. Renewable and Sustainable Energy Reviews, 191, 114094. https://doi.org/10.1016/j.rser.2023.114094
Dhoska, K., Bebi, E., Markja, I., Milo, P., Sita, E., & Qosja, S. (2024). Modelling the wind potential energy for metallurgical sector in Albania. Scientific Reports, 14(1), 1302. https://doi.org/10.1038/s41598-024-55388-9
Bououbeid, E. M., Yahya, A. M., Samb, M. L., Rehman, S., Mahmoud, A. K., & Menezo, C. (2024). Modelling approach and predictive assessment of wind energy potential in the Nouakchott region, Mauritania. Modeling Earth Systems and Environment, 10(1), 969–981. https://doi.org/10.1007/s40808-023-01824-0
Rosales-Valladares, V. R., Salgado-Herrera, N. M., Rodríguez-Hernández, O., Rodríguez-Rodríguez, J. R., Granados-Lieberman, D., & Anaya-Lara, O. (2024). Power hardware in the loop methodology applied in the integration of wind energy conversion system under fluctuations: A case study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), 2767–2791. https://doi.org/10.1080/15567036.2024.2308646
Cacciuttolo, C., Cano, D., Guardia, X., & Villicaña, E. (2024). Renewable energy from wind farm power plants in Peru: Recent advances, challenges, and future perspectives. Sustainability, 16(4), 1589. https://doi.org/10.3390/su16041589
Wang, C. N., Nguyen, H. K., Nhieu, N. L., & Hsu, H. P. (2024). A prospect theory extension of data envelopment analysis model for wave‐wind energy site selection in New Zealand. Managerial and Decision Economics, 45(1), 539–553. https://doi.org/10.1002/mde.4016
Abdullah-Al-Mahbub, M., & Islam, A. R. M. T. (2024). Sustainable wind energy potential in Sandwip and Kalapara coastal regions of Bangladesh: A way of reducing carbon dioxide emissions. Heliyon, 10(1). https://doi.org/10.1016/j.heliyon.2024.e23982
Zhang, M., Wu, H., & Luo, R. (2024, February). Evaluation of wind energy resources on electric power and wireless communication shared towers. In 2024 IEEE 3rd International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA) (pp. 867–870). IEEE. https://doi.org/10.1109/EEBDA60612.2024.10485818
Obane, H., Kazama, K., Hashimoto, H., Nagai, Y., & Asano, K. (2024). Assessing areas suitable for offshore wind energy considering potential risk to breeding seabirds in northern Japan. Marine Policy, 160, 105982. https://doi.org/10.1016/j.marpol.2023.105982
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Hasan Dinçer, Bijan Abadi, Serhat Yüksel, Serkan Eti (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.